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Summary 

This Technical Report describes the development of data-driven models to simulate the raw 

water quality of the Hetch Hetchy Regional Water System (HHRWS) to be used in the Long-Term 

Vulnerability Assessment (LTVA) and the Adaptation Planning for the San Francisco Public 

Utilities Commission Water Enterprise. Raw water quality models aim at predicting turbidity at 

the O’Shaughnessy Dam; turbidity and total organic carbon (TOC) at the Tesla Portal in HHRWS. 

Based on the performances of several prediction methods, the Composite Quantile Regression 

Neural Network (CQRNN) has been selected for the LTVA. CQRNN’s inputs include various 

hydrometeorological variables (e.g., inflows, air temperature, and water temperature), system state 

variables (e.g., reservoir storage, spill and release, flows through relevant pipelines), and variables 

that summarize the system memory (e.g., flows and dry days for previous and current water years, 

antecedent dry days). Historical observations show that levels of raw water quality had exceeded 

normal operating targets for turbidity at the Tesla Portal in 1997, which shut down the San Joaquin 

Pipeline for several days. To simulate the water system response to levels of raw water quality 

exceeding normal operating targets, it would require a feedback loop between the San Francisco 

System Model (HRG TR4 2021) used to simulate the operation of the HHRWS, and the considered 

CQRNN, which is not the option that has been chosen here. Instead, results of CQRNN have been 

used to develop water quality narratives as described in the LTVA report (HRG LTVA 2021). 

Furthermore, developed CQRNN models have revealed the system vulnerability regarding raw 

water quality via a climate stress test. This report describes the goal, the calibration, and the 

validation of the CQRNN approach. Results are obtained for turbidity at the O’Shaughnessy Dam, 

turbidity, and TOC at the Tesla water treatment plant. The performance of CQRNN for raw water 

quality prediction in HHRWS is compared with four state-of-the-art approaches commonly used 

in the literature (Quantile Regression, Linear Regression, Multivariate Adaptive Regression 

Spline, and K-Nearest Neighbors). The report ends with a conclusion that summarizes the model 

development.  
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1 Introduction 

1.1 Objective  

Climate change and other changing conditions may jeopardize the Hetch Hetchy Regional 

Water System (HHRWS) to meet the San Francisco Public Utilities Commission (SFPUC) in the 

future. To help address this concern, SFPUC collaborated with the University of Massachusetts 

Amherst (UMASS Amherst) to help identify critical vulnerabilities of the HHRWS to long-term 

changes in climate and other conditions under a project called the Long-Term Vulnerability 

Assessment and Adaptation Planning for the SFPUC Water Enterprise (LTVA). The objective of 

the LVTA is, in part, to “design and execute an exhaustive vulnerability assessment that provides 

a comprehensive understanding of the expected water system performance relative to goals and 

expectations of the system.” The general approach to achieve this objective, as outlined in the 

LTVA Detailed Analytical Plan, is to “develop a suite of interconnected computer models and 

supporting analytical modules representing important processes involved in the long-term 

planning of HHRWS and to then use them along with a scenario discovery approach to 

quantitatively assess system vulnerability.” This report focuses on developing a machine learning 

approach to predict raw water quality (i.e., turbidity and TOC) at the O’Shaughnessy Dam and the 

Tesla Portal. 

1.2 Context and scope of the report 

SFPUC conveys unfiltered water from the snowmelt-dominated Tuolumne River to the SFPUC 

service area. The Hetch Hetchy reservoir is the key infrastructure of the HHRWS, controlling the 

water flow to the Tesla water treatment facility via the San Joaquin Pipeline (SJPL). Hetch Hetchy 

water must meet all federal and state filtration avoidance criteria at the Tesla Portal to ensure no 

additional water treatment before being supplied to customers. The water enters the Tesla 

treatment facility to be disinfected using UV light and chlorine disinfection for the Hetch Hetchy 

supply. If turbidity, total organic carbon, and fecal coliform levels comply with the filtration 

avoidance criteria, water can be delivered to customers; otherwise, water must be filtered at the 

Sunol valley water treatment plant.  

A major turbidity event happened in January 1997 and is an example of a violation of the 

filtration avoidance criteria (Figure 1). A major rain-on-snow event caused the highest turbidity 

peak recorded at the Tesla portal (i.e., 6.77 NTU or 6.77 Nephelometric Turbidity Units). 

Eventually, it led to a shutdown of the SJPL. The high turbidity event occurred on 01/03/1997, 

caused by the big storm on 01/02/1997 (Figure 1). Such a high turbidity value is rare at the Tesla 

portal. The second and third highest turbidity peaks recorded at the Tesla Portal are 2.65 NTU 

(2000-11-22) and 2.5 NTU (1996-11-24). The recurrence interval of the 1997 turbidity event has 

been estimated to 67 years (see the detail of the frequency analysis in the appendix); while the 

recurrence interval of the second and third highest turbidity peaks ever recorded at the Tesla Portal 
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is 12 years (2.65 NTU on 2000-11-22) and 11 years (2.5 NTU on 1996-11-24). We find that the 

1997 turbidity event is rare, whose recurrence interval is six times greater than the recurrence 

interval of the second-highest turbidity. 

The 1997 turbidity event summarizes a severe concern of SFPUC regarding climate change. 

Would events like the 1997 event become more frequent under climate change? What would be 

the consequences for water delivery in the Bay area? Would climate change emphasize other 

processes that could ultimately lead to degradation of the Hetch Hetchy water quality? 

SFPUC needs to advance understanding of the vulnerability of the HHRWS regarding potential 

shifts in climate and other regulations that could lead to the alteration of water quality from the 

Hetch Hetchy reservoir. For this purpose, raw water quality models are developed to simulate the 

temporal dynamic of turbidity at the O’Shaughnessy Dam, turbidity, TOC at the Tesla Portal in 

the HHRWS, and their responses regarding potential changes in climate and other environmental 

regulations.  
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Figure 1 From top to bottom, turbidity at the Tesla Portal, the Hetch Hetchy inflow, the Hetch Hetchy Reservoir 

storage, and San Joaquin Pipeline flow from December 29, 1996, to January 6, 1997. The big storm on January 2, 

1997 (second figure from the top) caused the highest turbidity on January 3, 1997 (top figure) 

 
Figure 2 Hetch Hetchy Regional Water System owned and operated by SFPUC. Raw water quality models focus on 

the region between the Hetch Hetchy Reservoir and the Tesla Portal 

The vulnerability assessment of the SFPUC system regarding the water quality is conducted 

following the decision scaling approach (Brown et al. 2012). The flow chart in Figure 3 illustrates 

this approach. This report describes the development and assessment of raw water quality models. 

The climate stress test results are included in the Vulnerability Assessment Final Report (HRG 

LTVA 2021). 

 
Figure 3 Decision Scaling Approach for the Water Quality Vulnerability Assessment 
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The UMass Amherst research group receives data of five indicators (turbidity, TOC, 

Escherichia coli or E.coli, fecal coliform, total coliform) at several locations (Priest Bypass, the 

Tesla Portal, Priest Reservoir, O’Shaughnessy Dam, Mountain Tunnel at Priest, Moccasin Gate 

Tower/Moccasin Reservoir, Kirkwood, West Portal). For E.coli, fecal coliform and total coliform, 

chemical and biological input data should be included in models. However, only physical data 

such as hydroclimatic and operational factors are available. Thus, fecal and total coliform 

indicators are not considered in the study. SFPUC agrees that turbidity and TOC are the main 

studied water quality indicators. Also, they confirm that the O’Shaughnessy Dam and the Tesla 

Portal are focused on this project. The model is not built for TOC at the O’Shaughnessy Dam 

because the UMass Amherst team does not receive the input data.  

• Turbidity – Turbidity is a measure of the light scattered by suspended particles in the water 

and, as such, is a tracer of the concentration of suspended sediments. It is an indicator of 

water pollution.   

• Total Organic Carbon (TOC) – TOC is the amount of carbon in organic compounds. It 

is a tracer of organic substances. Furthermore, TOC can combine with the disinfectant in 

RWS (free chlorine) to cause disinfection byproducts (DBPs).  

To maintain water quality at acceptable levels, SFPUC needs to monitor water quality at 

different locations of the HHWRS and trigger adapted operations depending on the type of 

contamination, if required. For instance, if the turbidity and TOC levels of the Hetch Hetchy water 

exceed the filtration avoidance criteria, the water must be treated at the Sunol Valley Water 

Treatment Plant (SVWTP).  Specific filtration avoidance thresholds are set for each indicator of 

water quality: 

• Turbidity – The objective of SFPUC is to keep turbidity below 1 Nephelometric Turbidity 

Units (NTU). A threshold of 2 NTU is possible but may be detected by wholesale 

customers. The filtration avoidance threshold is 5 NTU (2 times in a 12-month rolling 

window).  

• Total Organic Carbon (TOC) – TOC should not exceed a level of 2 mg/L, and DBP 

violations likely occur when TOC is above 3 mg/L.  

1.3 Literature review 

Delpla et al. (2009) reviewed the studies assessing the potential effects of climate change on 

surface water quality. They conclude that innovative predictive tools are required to enhance risk 

management and adaptation measure.  

For example, Samal et al. (2013) studied the effect of climate change on the water turbidity in 

the Ashokan Reservoir (New York), one major reservoir for New York City’s water supply system. 

The Ashokan Reservoir receives water from the Esopus Creek watershed, which originated from 

Slide Mountain. New York City’s water supply system is located in a snow-dominated watershed, 

comparable to the upper part of the HHRWS. Across the upstream catchment of the Ashokan 
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reservoir, rain-on-snow events lead to high turbidity in the reservoir in Spring and Fall seasons, as 

shown in Figure 4.  Figure 4 also illustrates the effect of climate change on turbidity in the Ashokan 

reservoir. During winter months (i.e., from December to March), the warmer temperature increases 

the fraction of liquid precipitation, leading to higher flows that may re-suspend and erode materials 

in the riverbed. It increases turbidity in the reservoir. The turbidity decreases from current to future 

climate conditions in the early Spring season (i.e., April and May). A reduced snowpack can be 

explained by warmer temperatures in Winter, which further decreases flow to the reservoir 

consequently reduces turbidity.  

 
Figure 4 Average monthly reservoir turbidity under baseline and the simulated future period 2046-2065 

(Future_4665) and 2081-2100 (Future_8100) (Samal et al. 2013a)   

As illustrated in Figure 5, Weyhenmeyer and Karlsson (2009) showed that TOC levels increase 

nonlinearly with air temperature and runoff by using 3,123 lake water samples. This figure 

illustrates the effect of the warming temperature on TOC concentration for snow-dominated 

watersheds. As the average air temperature rises, the period during which the vegetation grows 

extends. The presence of flora increases the number of organic materials available to be flushed 

out during the high flow event, eventually leading to higher TOC values during these events. 
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Figure 5 Total organic carbon (TOC) of 3,123 lake water samples along with lake-specific annual mean air 

temperatures (T). TOC increases nonlinearly with increasing temperatures, clarified by mean values per degree 

temperature (gray dots). The nonlinear increase corresponds to the nonlinear increase in the duration of the main 

growing and runoff season (DT>0; black line) (Weyhenmeyer and Karlsson 2009) 

1.4 Motivation for a new raw water quality prediction tool 

SFPUC currently uses empirical models for simulating turbidity at O’Shaughnessy Dam and 

TOC at the Tesla Portal (Rob Clark 2017) (Table 1). However, SFPUC does not have the model 

for turbidity at the Tesla Portal. For turbidity at the O’Shaughnessy Dam, SFPUC uses a linear 

regression model at a weekly time step. For TOC, SFPUC uses a linear regression model for the 

annual scale. These models have several drawbacks: 

1. Time step: Weekly and annual time steps do not allow daily water quality monitoring, 

which may be essential to adapt HHRWS operations if needed. For instance, the example 

of the turbidity event in 1997 highlights that significant changes in water quality can 

happen from one day to another, which motivates developing a modeling framework that 

uses a daily time step. 

2. The recent literature has demonstrated that linear regression has a limited ability to capture 

nonlinear relations between water quality indicators and hydrometeorological (Futter and 

de Wit 2008; Weyhenmeyer and Karlsson 2009; Dhillon and Inamdar 2013; Mukundan et 

al. 2013).  

3. Two recent linear regression models from SFPUC (weekly turbidity at O’Shaughnessy 

Dam, and annual TOC at the Tesla Portal) (Rob Clark 2017) lack the validation 

recommended for ensuring the robustness of the approach, which is paramount when 

intended to be used for a long-term vulnerability assessment.  

4. SFPUC’s model is not designed to predict high water quality events, i.e., peaks (Rob Clark 

2017). Because extreme events are rare by definition, the ‘weight’ attributed to extreme 

events for estimating the regression parameters is a fortiori small compared with the 

‘’mass’’ of observed values between 20th and 80th percentiles. The Composite Quantile 

Regression Neural Network (CQRNN), developed for the need of the LTVA, can provide 

several quantiles for the water quality prediction. A simple regression model only gives a 

single estimate, usually by minimizing the mean cost function between observed and 

simulated values. By providing the distribution (i.e., several quantiles), we account for the 

uncertainty on the prediction. 

5. SFPUC models only simulate turbidity at the O’Shaughnessy Dam and TOC at the Tesla 

Portal, while we have one additional model: turbidity at the Tesla Portal. 

6. SFPUC models only consider hydrometeorological input, whereas the water quality might 

be affected by system operations described by state variables such as reservoir levels, 

pipeline flow, spill, release, etc. CQRNN enables us to link the water quality with both 

hydrometeorological predictors and system state variables.  
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The UMass Amherst research team has developed a new prediction tool for raw water quality 

to address the aforementioned limitations.  

Table 1 compares CQRNN with recent water quality models at SFPUC and reveals the strengths 

of CQRNN. The main advantages of CQRNN are: 

1. CQRNN predicts water quality indicators using both hydrometeorological conditions 

and system operations. 

2. The developed CQRNN provides several quantiles for water quality prediction. For the 

LTVA, low (2.5th, 25th), median (50th), and high (75th, 97,5th) percentiles of distribution 

for the considered water quality indicators are modeled. It allows the description of the 

uncertainty around the median prediction (50th) using a 95% confidence interval. 

3. By analyzing the CQRNN model parameters, the contributions from each predictor to 

the prediction can be identified. 
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Table 1 Compare the SFPUC’s recent water quality model and the Composite Quantile Regression Neural Network 

Characteristic SFPUC model for weekly 

turbidity at the O’Shaughnessy 

Dam 

SFPUC model 

for annual 

TOC at the 

Tesla Portal 

The proposed model in this study 

Method Linear regression Linear 

regression 

Composite Quantile Regression Neural 

Network (statistical model, i.e., quantile 

regression, combined with machine 

learning, i.e., neural network) 

Predictors Weekly averages from 1, 2, and 

3 weeks ago of the squared 

daily inflow, weekly average 

inflow from 1 week ago 

Current and 

prior water-

year inflow 

• Hydrometeorological variables: Air 

and water temperature, Hetch Hetchy 

(HH) inflow 

• System state variables: San Joaquin 

Pipeline flow (SJPL), HH storage, 

HH spill and release, Canyon Power 

Tunnel (CPT) 

• System memory: Flows and dry days 

in a previous water year, and in a 

recent water year, antecedent dry 

days, one-day-prior HH inflow 

Variables and 

Locations 

Turbidity at the O’Shaughnessy 

Dam 

TOC at the 

Tesla Portal  

Turbidity at the O’Shaughnessy Dam, 

turbidity, and TOC at the Tesla Portal  
Relation Linear Linear Nonlinear 

Validation Not included Not included Included 

Time step Weekly Water year Daily 

Predictive 

uncertainty 

Not available Not available Median prediction with 95% of 

confidence level 

 

2 Data 
The indicators of raw water quality (i.e., turbidity, TOC) are termed predictands. Turbidity at 

the O’Shaughnessy Dam has the most abundant data with 6496 days. Turbidity records at the Tesla 

Portal are 6767 days, while TOC at the Tesla Portal has 855 observed days. A sanity check is 

performed across the collected dataset to remove data records with measurement errors (e.g., 

outliers that are judged as ‘errors’ in agreement with SFPUC’s personnel).  Predictors are divided 

into three groups: the hydroclimate, the system state, and the system memory described in Table 

3. Hydroclimatic predictors are measurements relating to hydrology and climate, such as the Hetch 

Hetchy inflow, the air temperature over the Hetch Hetchy Reservoir, the water temperature at the 

Tesla Portal. System state predictors (i.e., operational drivers) in the Hetch Hetchy water supply 

system are composed of the SJPL flow, the Hetch Hetchy storage, the Hetch Hetchy spill and 

release (i.e., Hetch Hetchy Reservoir spill and release into the Tuolumne River for undesired 

excess water and for maintaining instream flow requirement), and the Canyon Power Tunnel 

(CPT) flow (see Figure 2). Since the Hetch Hetchy Reservoir is a big lake with a storage capacity 

reaching 360,360 acre-feet (444.5 million cubic meters), according to Null and Lund (2006), we 

need to consider the reservoir’s memory in operational and hydroclimatic variables. In particular, 

hydroclimatic and system state variables in previous time steps become system memory variables.  
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We classify system memory inputs into long-term memory, middle-term memory, and short-

term memory. Long-term memory refers to measurements of the previous water year, including 

cumulative dry days and flows. The middle-term memory implies dry days and flows within the 

current water year, computed as accumulated values from the first date to the predicted date in the 

current water year. Short-term memory considers the one-day-prior Hetch Hetchy flow and Hetch 

Hetchy antecedent dry days (i.e., no-precipitation days accumulated from the last day having 

precipitation until the predicted date). SFPUC measures all predictors. 

Table 2 Training and validation periods of turbidity at the O’Shaughnessy Dam, turbidity and TOC models at the 

Tesla Portal 

  Training dataset Validation dataset Full dataset 

Turbidity at 

O’Shaughnessy 

Dam 

Mean (NTU) 0.36 0.25 0.34 

 Standard deviation (NTU) 0.43 0.14 0.39 

 Number of days 5414 1353 6767 

 Duration 01/01/1996-

12/24/2010 

12/25/2010-

09/30/2014 

01/01/1996-

09/30/2014 

 Missing days 58 23 81 

Turbidity at the 

Tesla Portal 

Mean (NTU) 0.48 0.35 0.46 

 Standard deviation (NTU) 0.23 0.13 0.22 

 Number of days 5197 1299 6496 

 Duration 01/01/1996-

12/20/2010 

12/21/2010-

09/30/2014 

01/01/1996-

09/30/2014 

 Missing days 271 81 352 

TOC at the 

Tesla Portal 

Mean (mg/L) 1.36 1.34 1.35 

 Standard deviation 

(mg/L) 

0.24 0.20 0.23 

 Number of days 684 171 855 

 Duration 01/03/1999-

05/25/2011 

05/29/2011-

09/28/2014 

01/03/1999-

09/28/2014 

 Missing days 3841 1047 4892 
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Table 3 List of predictors 

 No. Name (Unit) Short name Dimension TOC at the 

Tesla Portal 

Turbidity at the 

Tesla Portal 

Turbidity at the 

O’Shaughnessy Dam 

Hydroclimatic 

predictors 

1 Hetch Hetchy inflow (Cubic feet per day, 

CFD) 

Q_HH_cfd Volume/Time ✓ ✓ ✓ 

2 Hetch Hetchy air temperature (Degree 

Celsius, °C) 

Ta_HH_C Temperature ✓ ✓ ✓ 

3 Tesla water temperature (Degree Celsius, 

°C) 

Tw_Tesla_C Temperature ✓ ✓  

System state 

predictors 

4 San Joaquin Pipeline flow (Millions of 

gallons per day, MGD) 

SJPL_mgd Volume/Time ✓ ✓  

5 Hetch Hetchy storage (Acre-foot, AF) V_HH_af Volume ✓ ✓ ✓ 

6 Hetch Hetchy spill and release (Cubic 

foot per second, CFS) 

SR_HH_cfs Volume/Time ✓ ✓ ✓ 

7 Canyon Power Tunnel flow (Cubic foot 

per second, CFS) 

CPT_cfs Volume/Time ✓ ✓  

Long-term 

memory 

8 Cumulative dry days in the previous 

water year (Days) 

ADD_HH_sum1 Day ✓ ✓ ✓ 

9 Cumulative flows in the previous water 

year (Cubic foot, CF) 

Q_HH_cfd_sum1 Volume ✓ ✓ ✓ 

Middle-term 

memory 

10 Cumulative dry days until the predicted 

day in the current water year (Days) 

ADD_HH_sum Day ✓ ✓ ✓ 

11 Cumulative flows until the predicted day 

in the current water year (Cubic foot, CF) 

Q_HH_cfd_sum Volume ✓ ✓ ✓ 

Short-term 

memory 

12 Hetch Hetchy antecedent dry days (days) ADD_HH Day ✓ ✓ ✓ 

13 One-day-prior Hetch Hetchy inflow 

(Cubic feet per day, CFD) 

Q_HH_cfd1 Volume   ✓ 
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3 Methodology 

3.1 Composite Quantile Regression Neural Network 

3.1.1 Mechanism 

The availability of remote sensing products and long records of ground measurements has 

motivated machine learning approaches in geosciences and engineering. Water quality is a young 

science with a lot of undiscovered knowledge (Costa et al. 2021). Data from measurements is 

sufficient for artificial intelligence models to investigate current phenomena (Najah et al. 2013). 

Among these techniques, ANN has been widely applied in water quality modeling (Tiyasha, Tung, 

and Yaseen 2020) due to its ability to represent complex relationships among many processes 

(Sinshaw et al. 2019). 

Figure 6 illustrates the structure of the ANN model. The network contains three layers: the input 

layer, the hidden layer, and the output layer. Figure 6 shows the network with only one layer as an 

example, although more layers can be considered in ANN. The value 𝐻𝑗 at the hidden layer neuron, 

j for the time step t is obtained by applying the activation function 𝑔1 to the weighted sum of the 

input 𝑥𝑖: 

𝐻𝑗,𝑡 = ∑ 𝑔1(𝑤𝑖,𝑗𝑥𝑖,𝑡 + 𝑏𝑗)

𝐼

𝑖=1

, 

 

1 

with 𝐼 being the number of inputs (i.e., predictors), 𝑤𝑖,𝑗 the weight associated with the input 𝑥𝑖 and 

the hidden layer neuron j, 𝑏𝑗 the hidden-layer bias. 

Similarly, the value of the output neuron (i.e., the predictand) is obtained by applying the 

activation function 𝑔2 to the weighted sum of the output from each hidden layer neuron 𝐻𝑗: 

ŷ𝑡 = ∑ 𝑔2(𝑣𝑗𝐻𝑗,𝑡 + 𝑐),

𝐽

𝑗=1

 2 

where J is the number of neurons in the hidden layer and 𝑣𝑗  the weight associated with the value 

𝐻𝑗 of the hidden layer neuron j, ŷ the predicted value of the considered predictand at the time step 

t, 𝑐 is the output-layer bias. 

After combining equation 1 and 2, the general function is summarized in equation 3: 

ŷ𝑡 = ∑ 𝑔2(𝑣𝑗 ∑ 𝑔1(𝑤𝑖,𝑗𝑥𝑖,𝑡  +  𝑏𝑗)

𝐼

𝑖=1

+ 𝑐),

𝐽

𝑗=1

 3 
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Predicted values (ŷ𝑡) of ANN should be close to observed values to produce a good predictive 

performance. ANN needs the training (i.e., the calibration) to achieve that. Training or calibration 

is the ANN’s learning process by modifying parameters, including the weights 𝑤𝑖,𝑗, and 𝑣𝑗  to 

minimize errors (i.e., cost or loss or objective functions) between predicted and observed values 

(Goh 1995). Throughout the training, ANN’s parameters (i.e., weights 𝑤𝑖,𝑗 and 𝑣𝑗  and biases 𝑏𝑗 

and 𝑐) are updated through a backpropagation procedure that uses a stochastic gradient-based 

nonlinear optimization (Cannon 2011) to minimize the error function. Once the weights are 

updated, a new prediction can be made, and further evaluation of the error function is done. This 

procedure is repeated until the convergence of the error function.  

ANN inputs are first standardized to zero mean and unit standard deviation (Cannon 2011), 

facilitating the convergence of the backpropagation procedure.  

The logistic function, a typical activation function in neural network’s applications (Chau 

2006), is used for 𝑔1and 𝑔2: 

g(n) =
1

1 + e−n
. 

4 

Other activation functions are also commonly used, such as the Rectified Linear Unit (ReLU), and 

the Hyperbolic Tangent (Tanh) functions. 

 
Figure 6 Artificial Neural Network structure. 𝑥𝑖  is the input; 𝑤𝑖𝑗 is the weight between input 𝑖 and neuron 𝑗; 𝑣𝑗 is the 

weight between neuron 𝑗 and predicted output �̂� 

The ANN model discussed above is meant to be calibrated against an error measure, usually 

mean squared error, between predicted and observed values; hence, it is appropriate to normally 

distributed data (Maier and Dandy 2000) and aims to predict the mean of the predictands instead 

of their percentiles. In other words, ANN is not designed to estimate skewed data and tails of the 

distribution (Taylor 2000), implying its weakness for simulating high and low values in the dataset. 

Hence, Quantile Regression Neural Network (QRNN) is created to overcome this challenge. Q. 

Xu et al. (2016) found that QRNN is more robust than local linear regression and spline regression 

j 

 

𝑥𝑖 
𝑤𝑖𝑗  
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in fitting outliers. QRNN combines the Quantile Regression method with the Artificial Neural 

Network (Taylor 2000). The main idea of QRNN is that the error function (denoted as loss or loss 

function) is built by quantile regression cost function, while predicted values are derived from a 

neural network (Taylor 2000) (see Equation 5). It helps model a chosen quantile of the predictand 

distribution rather than median or mean. The loss function to be minimized reads as (Taylor 2000): 

𝐸𝑄𝑅𝑁𝑁 = ∑ τ|yt − ŷ𝑡| +

t|yt≥ŷ𝑡

∑ (1 − τ)|yt − ŷ𝑡|,

t|yt<ŷ𝑡

 
5 

With 𝐸 the loss function, τ the quantile of the predictand distribution to be predicted by the 

network, yt the value of the predictand at the time step t and ŷ𝑡 the predicted quantile value of the 

predictand distribution. Note that ŷ𝑡 is obtained following equation 3. Note also in equation 5 that 

for values of τ larger than 0.5 (i.e., prediction focuses on values greater than the median of the 

distribution), values ŷ𝑡 that underestimate yt contributed more to the loss function (i.e., weight 

equals τ > 0.5) while values ŷ𝑡 that overestimate yt contribute less (weight equals 1 − τ < 0.5). 

Conversely, if τ < 0.5, a higher weight is given to predicted values ŷ𝑡 that underestimate yt.  

Nevertheless, QRNN still encounters crossing quantiles because quantile predictions are 

calibrated separately, leading to different parameter sets (Cannon 2018). To resolve this problem, 

Xu et al. (2017) and Cannon (2018) proposed Composite Quantile Regression Neural Network 

(CQRNN) that could simultaneously calibrate all quantile estimations. Consequently, weights and 

biases are unique for all quantile estimations (Xu et al. 2017, and Cannon 2018). The CQRNN 

algorithm has two benefits: 1) avoiding the crossing issue of quantile simulations (Cannon 2018), 

and 2) combining strengths from all quantile predictions to produce multiple quantile estimations 

close to true conditional quantile functions (Xu et al. 2017, and Cannon 2018). CQRNN has the 

same structure as QRNN. The only difference is that the loss function of CQRNN is the average 

from all quantile predictions (equation 6); whereas, the QRNN’s error function merely considers 

the loss function for each quantile (equation 5). The separate calibration for each quantile in QRNN 

induces distinctive sets of weights and biases, which causes the overpassing of quantiles. 

According to Xu et al. (2017) and Cannon (2018), the loss function of CQRNN has the following 

form: 

𝐸𝐶𝑄𝑅𝑁𝑁 =
1

𝐾
∑ 𝐸𝑄𝑅𝑁𝑁(τ𝑘)

𝐾

𝑘=1

=
1

𝐾
∑ ( ∑ τ𝑘|yt − ŷ𝑡| +

t|yt≥ŷ𝑡

∑ (1 − τ𝑘)|yt − ŷ𝑡|

t|yt<ŷ𝑡

)

𝐾

𝑘=1

 

6 

With k = 1, 2... K are all desired quantiles, 𝐸𝑄𝑅𝑁𝑁(τ𝑘) is the loss function of QRNN for a specific 

τ𝑘, described in equation 5. In this research, five quantiles (i.e., 2.5th, 25th, 50th, 75th, and 97.5th) 

are used.  

3.1.2 Calibration 

Figure 7 illustrates the calibration process, including training and validation for a one-layer 

neural network, considered for the raw water quality model of the Hetch Hetchy system (described 
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below). The training chunk (i.e., the calibration) includes the first 80% of the available time series 

of predictors/predictands. The validation chunk contains 20% of the remaining data (i.e., the time 

series's last 20% data points). In this study, the validation size is 25% of training, which complies 

with Najah et al. (2013) that this ratio should be 10-40%. A good training set should include all 

extreme events (Najah et al. 2013). Thus, the training dataset in this study consists of the largest 

predictand values, such as the highest turbidity value ever recorded at the Tesla Portal in 1997, 

which ensures the network to be trained to reproduce such critical events. Details of training and 

validation datasets for turbidity and TOC are described in Table 2.    

The ensemble technique can improve a single neural network (Khalil, Ouarda, and St-Hilaire 

2011). This method combines results from neural networks to produce the ensemble output (Khalil, 

Ouarda, and St-Hilaire 2011). Several ways are used to generate ensemble neural networks, such 

as using 1) different initial random weights, 2) diverse network topology, 3) varied training 

algorithms, and 4) divergent training sets (Khalil, Ouarda, and St-Hilaire 2011). Among them, 

manipulating training datasets are popular (Khalil, Ouarda, and St-Hilaire 2011). Bagging is the 

most frequently used (Khalil, Ouarda, and St-Hilaire 2011). Therefore, the training set is split into 

five sub-datasets using the bagging method (Cunningham, Carney, and Jacob 2000). This method 

consists of creating N training subsets by randomly sampling observed time series of predictors 

and predictands with replacement from the original training set (Figure 7). The objective is to 

minimize the dependence of model parameters on the training set by creating new training sets 

that are similar but still different from the original so that the risk of reaching a local optimum in 

the parameter space is reduced (Dreiseitl and Ohno-Machado 2002). As shown in Figure 7, five 

bags are used in this study (i.e., N=5) as a good compromise between the computation’s efficiency 

and reduced risk of reaching a local optimum in the parameter space. Some papers (Shu and 

Ouarda 2007; and Khalil, Ouarda, and St-Hilaire 2011) stated that the ensemble should be 

averaged from at least five neural networks (i.e., five bags) to minimize the estimated error. The 

final prediction of CQRNN is generated from the ensemble across the five CQRNN models (i.e., 

noted as Ensemble CQRNN in Figure 7). Furthermore, each CQRNN is optimized from five 

repeated runs with different starting weights and biases to avoid the local minima of the loss 

function. This study uses two methods to create the neural network ensemble for improving the 

model’s robustness: different randomly initial conditions (i.e., weights and biases) and training 

sets (Khalil, Ouarda, and St-Hilaire 2011). 

The number of neurons in the hidden layer (only one hidden layer is used in this study) is chosen 

so that the averaged loss function across five CQRNNs is minimum for the validation set. As 

explained in the mechanism above, each CQRNN model (optimized from five different random 

sets of weights and biases) has the error function, averaged from five quantiles: 2.5th, 25th, 50th, 

75th, and 97.5th. For calibration, the optimal number of neurons is selected by the least loss function 

averaged from five bagged samples and five quantiles (i.e., 2.5th, 25th, 50th, 75th, and 97.5th) in the 

validation chunk. The selection of hyperparameters (i.e., the number of neurons in this study) from 

validation prevents CQRNN from overfitting. The more neurons are, the lower losses are in the 

calibration (see Figure 8, Figure 9, and Figure 10). However, too many neurons provoke the 
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overfitting, while too few neurons evoke the underfitting (Khalil, Ouarda, and St-Hilaire 2011). 

Therefore, hyperparameters of CQRNN should be chosen from the validation dataset, which is not 

used by the training. The CQRNN model is built in the R programming language and package 

mcqrnn (Cannon 2019).  

 

Figure 7 Bagging setting in this study. CQRNN is the Composite Quantile Regression Neural Network (optimized 

from five random sets of weights and biases) 
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3.2 Input determination for the CQRNN approach 

For the selection of predictors, we combine three methods which are i) priori knowledge, ii) 

cross-correlation, iii) heuristic (trial and error) approaches (Bowden, Dandy, and Maier 2005). The 

prior knowledge is using the expertise to define candidate predictors for water quality prediction. 

Cross-correlation means that we remove variables that are highly correlated to each other. The 

heuristic approach implies that we build several water quality models from several combinations 

of predictors and chose the best model, which has the best predictive performances. As a result, 

we find that turbidity and TOC models at the Tesla Portal need all twelve predictors listed in Table 

3. We use the one-day-prior HH inflow for turbidity at the O’Shaughnessy Dam because the 

highest HH inflow caused by a rain-on-snow event (01/02/1997) occurred one day before high 

turbidity spikes (01/03/1997 - 01/15/1997). This phenomenon is caused by several reasons such 

as the difference in the sampling of observations, dam operations, etc. For turbidity and TOC at 

the Tesla Portal, we do not use the one-day-prior HH inflow since this location is indirectly 

affected by this predictor. Moreover, the turbidity model at the O'Shaughnessy Dam excludes the 

Canyon Power Tunnel flow and the San Joaquin Pipeline flow because the Canyon Power Tunnel 

and the San Joaquin Pipeline are located downstream of the dam. Table 3 shows the predictors 

used in each model. 

3.3 Predictors’ relative importance 

Artificial neural networks are often mentioned as a ‘black box’ linking a set of predictors to 

predicting a chosen variable. However, several methods exist to open the ‘black box’, which allows 

to understand better the contribution of each predictor to the output of the network (e.g., Pentoś 

2016). In this study, we use the connection weight method as described in (Gevrey, Dimopoulos, 

and Lek (2003) to estimate the contribution of each predictor to the network prediction. A summary 

of this method is provided below. 

As shown in Figure 6, each predictor i value to be input to a given neuron j of the hidden layer 

is assigned a weight 𝑤𝑖𝑗 (equation 1). In addition, the output from each neuron j of the hidden layer 

is assigned a weight 𝑣𝑗 . According to the connection weight method (Gevrey, Dimopoulos, and 

Lek 2003), these weights can represent the contribution from each predictor to the final network 

prediction. They are somehow similar to coefficients (𝛽) in the equation 8. 

The contribution from each predictor is further discussed using the Relative Importance (RI) 

metric first proposed by Garson (1991) described in Gevrey, Dimopoulos, and Lek (2003); Kemp, 

Zaradic, and Hansen (2007); (de Oña and Garrido 2014):  

𝑅𝐼𝑖 =  
∑ |𝑤𝑖𝑗| × |𝑣𝑗|𝐽

𝑗=1

∑ ∑ |𝑤𝑖𝑗| × |𝑣𝑗|𝐽
𝑗=1

𝐼
𝑖=1

× 100 
7 



33 

 

Where 𝑅𝐼𝑖 is the relative importance of the predictor i (%), 𝑤𝑖𝑗 is the weight assigned to the 

predictor i and neuron j, 𝑣𝑗  is the weight assigned to the output of the neuron j,  𝐽 is the number of 

hidden neurons, and 𝐼 is the number of predictors. 

3.4 Other Data-driven Methods 

To evaluate the performance of the developed approach, CQRNN is compared with other data-

driven methods commonly used to predict water quality such as QR (e.g., Francke, López‐Tarazón, 

and Schröder 2008), LR (e.g., Francke, López‐Tarazón, and Schröder 2008), MARS (Heddam and 

Kisi 2018), and KNN (Lee and Scholz 2006). We use identical training and validation datasets for 

all methods to make a fair comparison. In other words, only one set of predictors is used in all five 

algorithms. Below, a short description of each model is provided. More details for each technique 

are given in the cited literature. 

3.4.1  Linear Regression  

LR is a parametric approach to fit a linear relationship between predictors and a predictand. The 

general form of a multivariate LR is as follows:  

�̂�𝑡 = 𝛽0 + 𝛽1 × 𝑥1,𝑡 + ⋯ + 𝛽𝑛 × 𝑥𝐼,𝑡 + 𝜀𝑡 
8 

Where �̂�𝑡 the predicted value of the predictand at the time step t, 𝑥𝑖, t the value of the predictor i 

at the time step t and I the number of predictors (i.e., inputs), 𝛽𝑖 the regression coefficient for the 

predictor i, 𝜀𝑡 an error term. The regression coefficients 𝛽𝑖 are optimized to minimize the mean 

square error (i.e.,∑ 𝜀𝑡
2

𝑡 ). The LR model is built based on the function lm from the stats R package 

(Wilkinson and Rogers 1973). 

3.4.2 Quantile Regression  

QR (Koenker and Bassett 1978) consists of fitting a LR model using the loss function described 

in equation 5 by substituting �̂�𝑡 by equation 8. The QR model is built by using the function rq from 

the quantreg R package (R. Koenker et al. 2019). 

3.4.3 Multivariate Adaptive Regression Spline 

MARS is a nonparametric method (Friedman 1991). It is useful when predictors and predictand 

have a nonlinear relationship. If not, MARS is similar to LR. When nonlinearities exist, such as a 

change in slope at a specific location in the predictor space (commonly called knot), the MARS 

algorithm identifies the knot. It then fits a LR using the subsets of predictors on each side of the 

knot. The predicted value �̂�𝑡 is then given as: 
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�̂�𝑡 = ∑ 𝑙𝑘(�̂�𝑘,𝑡)  + 𝜀𝑡,

𝐾

𝑘=1

 

9 

Where �̂�k,𝑡 is the predicted value obtained from the regression between the knot k and k+1, K is 

the number of knots and 𝑙𝑘 is the Hinge function that returns identity if below the knot k within 

the predictor space, and 0 otherwise. Note that the MARS algorithm defines the optimal number 

of knots to minimize the squared error. In equation 9, �̂�k,𝑡 is obtained using equation 8 across the 

subset of predictors located between the knot k and k+1. The MARS model is built using the mars 

function from the mda R package (Leisch and Ripley 2017). 

3.4.4 K-Nearest Neighbors 

KNN is a nonparametric resampling algorithm (Lall and Sharma 1996). KNN prediction is 

based on the weighted average of predictand values for K closest neighbors. In this context, the K 

is a hyper-parameter. The neighbors are predictand values observed during dates for which 

predictors are similar to the current time simulation step. The weight given to each selected 

predictand is the averaged inverse of the Euclidean distance between predictors. A larger weight 

is given to predict and for which predictors are more similar to the current simulated time step. 

The KNN sampling approach is built based on using the function train from the caret R package 

(Wing et al. 2019). 

3.5 Predictive Performance Measures 

3.5.1 Loss Function of Composite Quantile Regression Neural Network 

Since CQRNN calibrates model parameters through minimizing a loss function, we first 

evaluate CQRNN by this loss. The loss should be small enough to confirm a good model. The loss 

function is expressed by equation 6.  

3.5.2 Absolute Error (AE) 

Absolute Error (AE) can detect the averaged bias between the prediction and the observation, 

revealing the performance of models. AE should be as small as possible. AE is calculated as 

follows.  

𝐴𝐸 =  |
∑ (𝑦𝑡 − �̂�𝑡)𝑇

𝑡=1

𝑇
| 

10 

Where 𝑇 total number of time steps, 𝑦𝑡 the observed value at time step 𝑡, �̂�𝑡 the predicted value at 

time step 𝑡. In our paper, the time step is daily; the value is water quality (specifically, turbidity 

and TOC for the case study). 
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4 Results and Discussion 

To reveal the performance of the water quality model and predictors' effect, the result section 

is composed of three main sub-sections. Section 4.1 presents results from selecting the number of 

neurons for each CQRNN model (denoted as a hyper-parameter). The number of hidden layers 

(see Figure 6) is also referred to as a hyper-parameter, but we only use one layer in this study. 

Therefore, the selection is only conducted for the number of neurons. Section 4.2 shows the 

comparison among CQRNN and other conventional methods (QR, LR, MARS, and KNN) in 

simulating turbidity and TOC at the Tesla Portal, turbidity at the O’Shaughnessy Dam. Section 4.3 

aims to define significant explanatory variables on water quality.  

4.1 Calibration of hyper-parameters in CQRNN 

As the number of neurons in the hidden layer increases (i.e., the model complexity increases), 

the value for the loss function obtained for the training set commonly decreases. For example 

illustrated in Figure 8, Figure 9, and Figure 10, where the values of the loss function obtained for 

the training in turbidity and TOC models decrease as the number of neurons increases. 

Parsimonious models (i.e., a model with a small number of parameters) are usually preferred to 

prevent overfitting the model parameters. In this context, the overfitting of the model parameters 

often increases the loss function for the validation set with the number of parameters. For this 

reason, the number of neurons for each location is selected as the one that minimizes the value of 

the loss function obtained for the validation set. The optimal numbers of neurons for each model 

are listed in Table 4.  

 
Figure 8 Evolution of the CQRNN losses (averaged quantile regression errors over 2.5th, 25th, 50th, 75th, 97.5th 

percentiles, described in equation 6) with the number of neurons in one hidden layer for turbidity at the 

O’Shaughnessy Dam 
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Figure 9 Evolution of the CQRNN losses (averaged quantile regression errors over 2.5th, 25th, 50th, 75th, 97.5th 

percentiles, described in equation 6) with the number of neurons in one hidden layer for turbidity at the Tesla Portal 

 
Figure 10 Evolution of the CQRNN losses (averaged quantile regression errors over 2.5th, 25th, 50th, 75th, 97.5th 

percentiles, described in equation 6) with the number of neurons in one hidden layer for TOC at the Tesla Portal 

Table 4 Optimal number of neurons for water quality models in the Hetch Hetchy Regional Water System 

 Turbidity Total organic carbon (TOC) 

The O’Shaughnessy Dam 2  

The Tesla Portal 6 2 
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4.2 Performances of CQRNN in water quality prediction in the 

Hetch Hetchy Regional Water System 

To evaluate the general predictive performance of models, the loss (see equation 6), and the AE 

(see equation 10) are investigated. The loss is the optimizer of CQRNN and QR, while AE is 

similar to the mean squared error, which is the objective function in the LR’s optimization. AE is 

used because it has the same unit as the loss function. Losses and AEs from CQRNN, QR, LR, 

MARS, and KNN for all sites and predictands are listed in   
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Table 5. These metrics are visually illustrated in Figure 11, Figure 12, and Figure 13, 

respectively for turbidity at the O’Shaughnessy Dam, turbidity, and TOC at the Tesla Portal. In 

each model, the loss is computed as the average over five quantiles (i.e., 2.5th, 25th, 50th, 75th, 97.5th 

percentiles) (see equation 6). For CQRNN and QR, five quantile estimations are distinct. However, 

LR, MARS, and KNN are identical because these methods generate only one mean prediction. 

Therefore, predicted and observed values are the same for five quantiles in equation 6 when 

computing losses for LR, MARS, and KNN. The only change is the quantile values τ in equation 

6. AEs are calculated based on median estimations in CQRNN and QR (i.e., median is a proxy for 

the mean in these methods). AEs are also obtained for LR, MARS, and KNN, which produce mean 

predictions.  

In   
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Table 5, red numbers indicate the best models. All losses and AEs from the CQRNN model are 

minimums, except for training AEs. This fact reveals the superior performance of the CQRNN 

model over QR, LR, MARS, and KNN. The KNN approach seems to be the second-best option 

for water quality modeling based on the lowest training AE. However, KNN is not good because 

of poor performances in validation AEs. The comparison among five methods (i.e., CQRNN, QR, 

LR, MARS, and KNN) is impartially conducted because five models use the same bagging 

technique. CQRNN performs well in both loss and AE, although CQRNN does not optimize AE; 

this suggests that CQRNN’s median predictions are close to the mean. Other methods do not 

perform well for error functions that they do not optimize for. For example, LR, MARS, KNN lack 

quantile estimations so that their predictive performances are understandably poor for losses, 

which are averaged over five percentile predictions. Unlike CQRNN, QR performs poorly in terms 

of the assessment based on AEs since they are not the cost functions in this technique. 
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Table 5 Predictive performance measures as losses (quantile regression errors from equation 6) and absolute errors 

(AEs) of CQRNN (Composite Quantile Regression Neural Network), QR (Quantile Regression), LR (Linear 

Regression), MARS (Multivariate Adaptive Regression Splines), KNN (K-Nearest Neighbors) for turbidity at the 

O’Shaughnessy Dam (Turb_OSH), turbidity and TOC at the Tesla Portal (Turb_Tesla and TOC_Tesla). Training 

and validation sets are described in Table 2. The training dataset accounts for 80% of the full data, while the 

remaining 20% data is used for validation (see Table 2). The training data has a larger variability and more extremes 

than the validation one (see Table 2). Red numbers are the least losses and AEs, implying the best model 

 CQRNN QR LR MARS KNN 

Loss Turb_OSH (NTU) Training 0.030 0.038 0.069 0.061 0.008 

Validation 0.026 0.026 0.061 0.059 0.064 

Turb_Tesla (NTU) Training 0.028 0.037 0.063 0.056 0.032 

Validation 0.032 0.033 0.067 14.71 0.073 

TOC_Tesla 

(mg/L) 

Training 0.028 0.034 0.060 0.045 0029 

Validation 0.031 0.041 0.069 0.079 0.077 

Absolute error 

 

Turb_OSH (NTU) 

 

Training 0.227 0.391 0.368 0.346 0.099 

Validation 0.136 0.125 0.176 0.160 0.172 

Turb_Tesla (NTU) 

 

Training 0.168 0.202 0.197 0.170 0.130 

Validation 0.137 0.142 0.170 45.10 0.188 

TOC_Tesla 

(mg/L) 

 

Training 0.127 0.158 0.156 0.121 0.086 

Validation 
0.131 0.174 0.174 0.201 0.189 

 
Figure 11 Compare the performance of CQRNN (Composite Quantile Regression Neural Network) with QR 

(Quantile Regression), LR (Linear Regression), MARS (Multivariate Adaptive Regression Splines), KNN (K-

Nearest Neighbors) for turbidity at the O’Shaughnessy Dam by losses (quantile regression errors from equation 6) 

and absolute errors (AEs). Top left, top right, bottom left, and bottom right figures respectively illustrate training 

loss, validation loss, training AE, and validation AE 
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Figure 12 Compare the performance of CQRNN (Composite Quantile Regression Neural Network) with QR 

(Quantile Regression), LR (Linear Regression), MARS (Multivariate Adaptive Regression Splines), KNN (K-

Nearest Neighbors) for turbidity at the Tesla Portal by loss (quantile regression error from equation 6) and absolute 

error (AE). Top left, top right, bottom left, and bottom right figures respectively illustrate training loss, validation 

loss, training AE, and validation AE 

 
Figure 13 Compare the performance of CQRNN (Composite Quantile Regression Neural Network) with QR 

(Quantile Regression), LR (Linear Regression), MARS (Multivariate Adaptive Regression Splines), KNN (K-

Nearest Neighbors) for TOC at the Tesla Portal by loss (quantile regression error from equation 6) and absolute 

error (AE). Top left, top right, bottom left, and bottom right figures respectively illustrate training loss, validation 

loss, training AE, and validation AE 

4.2.1 Turbidity at the O’Shaughnessy Dam 

For water managers, the exceedance of water quality levels over the regulatory limit is crucial. 

Therefore, a water quality model, which can predict extreme events, is as helpful as performing 

well on the data mean. A rain-on-snow event caused high turbidity values at the O’Shaughnessy 
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Dam and the Tesla Portal in January 1997. Thus, the performances of turbidity models at these 

locations should be assessed by the ability of re-producing turbidity peaks in January 1997.    

Figure 14 illustrates the rain-on-snow event in 1997, generating high inflow (middle right) and 

storage (bottom right) at the Hetch Hetchy Reservoir. This event triggered high turbidity values 

(top right of Figure 14) and the SJPL shutdown. CQRNN (top left of Figure 14) and KNN 

(bottom left of Figure 14) can capture high turbidity levels between January 3-15, 1997. 

However, as the interpretation for   
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Table 5, KNN has a poor performance on the validation dataset. Therefore, KNN is not selected 

due to its overfitting. LR, MARS (bottom left of Figure 14), and QR (middle left of Figure 14) fail 

to simulate turbidity peaks between January 3-15, 1997. In brief, the CQRNN’s performance is 

the most satisfactory due to its capability to simulate both variability and turbidity peaks at the 

O’Shaughnessy Dam. 
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Figure 14 Compare the performance of CQRNN (Composite Quantile Regression Neural Network) with QR 

(Quantile Regression), LR (Linear Regression), MARS (Multivariate Adaptive Regression Splines), KNN (K-

Nearest Neighbors) in modeling turbidity peaks at the O’Shaughnessy Dam in January, 1997. The comparison is 

illustrated by the simulation of a rain-on-snow event causing 13 high turbidity days (01/03/1997 - 01/15/1997) at the 

O’Shaughnessy Dam in CQRNN (Composite Quantile Regression Neural Network), QR (Quantile Regression), LR 

(Linear Regression), MARS (Multivariate Adaptive Regression Spline), KNN (K-Nearest Neighbors). Left figures 

from top to bottom respectively illustrate CQRNN, QR, and three methods from LR, MARS, KNN. In top left and 

middle left figures, “2.5th”, “25th", “50th”, 75th”, “97.5th” are respectively 2.5th, 25th, 50th, 75th, 97.5th percentile 

predictions. Right figures from top to bottom respectively show the observed turbidity levels (OBS), the Hetch 

Hetchy inflow, and the Hetch Hetchy Reservoir storage (in thousands of acre-feet, TAF) during these 13 days 

The performance of CQRNN in modeling turbidity at the O’Shaughnessy Dam is revealed in 

Figure 15 and Figure 16, respectively, by plotting time series and cumulative density functions 

(CDFs). Being similar to Figure 14, it is found that CQRNN can simulate high turbidity events in 

1997 based on illustrations from Figure 15 and Figure 16. Furthermore, thanks to the quantile 

estimation, observed turbidity values at the O’Shaughnessy Dam are fallen within the 95% 

predictive range. Therefore, CQRNN and QR can reach more high and low turbidity levels than 
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LR, MARS, and KNN (see Figure 15 and Figure 16). Particularly, when looking at cumulative 

density curves in Figure 16, observations are captured by CQRNN and QR, but they are uncaptured 

by LR, MARS, and KNN in the validation period. 

Moreover, it is observed that the 95% prediction interval from QR, generated by both 2.5th and 

97.5th percentile estimations, is wider than the one of CQRNN based on time series in Figure 15 

and CDFs from Figure 16. Thus, CQRNN has lower underestimated and over estimated errors 

from 2.5th and 97.5th percentile models than QR. In general, CQRNN better simulates the 

variability and peaks of turbidity data at the O’Shaughnessy Dam than other models in both 

training and validation.  
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Figure 15 Predicted and observed time series of turbidity at the O’Shaughnessy Dam in training and validation 

periods for five methods: CQRNN (Composite Quantile Regression Neural Network), QR (Quantile Regression), 

LR (Linear Regression), MARS (Multivariate Adaptive Regression Splines), KNN (K-Nearest Neighbors). Top left, 

top right, middle left, middle right, bottom left and bottom right respectively illustrate training period of CQRNN, 

validation period of CQRNN, training period of QR, validation period of QR, training periods of LR, MARS, KNN, 

and validation periods of LR, MARS, KNN, The 50% predictive interval is the area between the 25th and 75th 

percentile models. The 95% predictive interval is the area between the 2.5th and 97.5th percentile models 
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Figure 16 Predicted and observed cumulative density functions of turbidity at the O’Shaughnessy Dam in training 

and validation periods for five methods: CQRNN (Composite Quantile Regression Neural Network), QR (Quantile 

Regression), LR (Linear Regression), MARS (Multivariate Adaptive Regression Splines), KNN (K-Nearest 

Neighbors). Top left, top right, middle left, middle right, bottom left and bottom right respectively illustrate training 

period of CQRNN, validation period of CQRNN, training period of QR, validation period of QR, training periods of 

LR, MARS, KNN, and validation periods of LR, MARS, KNN, The 50% predictive interval is the area between the 

25th and 75th percentile models. The 95% predictive interval is the area between the 2.5th and 97.5th percentile 

models 
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Figure 17 and Figure 18 compare the CQRNN model with the SFPUC’s weekly regression 

model, respectively, by the time series and the scatter plot. Figure 17 and Figure 18 show that the 

SFPUC’s weekly regression model cannot capture peaks caused by the rain-on-snow event in 

1997, while CQRNN can reach these turbidity spikes. In addition, according to Figure 18, it is 

found that the scatter plot from CQRNN follows the 1-1 line better than the SFPUC’s weekly 

regression turbidity model at the O'Shaughnessy Dam. Additionally, CQRNN has a smaller mean 

absolute error than QR. Consequently, it is concluded that CQRNN outperforms the SFPUC 

regression model. 

 
Figure 17 Compare CQRNN with the SFPUC’s weekly regression model by the scatter plot for turbidity at the 

O’Shaughnessy Dam (OSD). MAE is the mean absolute error between predicted and observed turbidity values 

 
Figure 18 Compare CQRNN with the SFPUC’s weekly regression model by the time series plot for turbidity at the 

O’Shaughnessy Dam (OSD). MAE is the mean absolute error between predicted and observed turbidity values 
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4.2.2 Turbidity at the Tesla Portal 

The historical TOC data is less variable and does not include any recorded extreme events, 

whereas the actual turbidity data contained the turbidity extreme on January 3, 1997. Thus, we 

compare the abilities to simulate extreme events from five models (i.e., CQRNN, QR, LR, MARS, 

and KNN) based on the turbidity event on January 3, 1997. This comparison is shown in Figure 

19.  

On January 2, 1997, a massive inflow caused by a rain-on-snow event entered the Hetch Hetchy 

Reservoir (see the middle right plot of Figure 19). This discharge peak caused a spike in turbidity 

level (6.77 NTU) on January 3, 1997 (see the top right graph of Figure 19). In this situation, 

reservoir operators reduced the SJPL flow on the same date and shut down these water supply 

pipelines completely one day after that (see the bottom right plot of Figure 19). Only CQRNN can 

capture the turbidity peak in 1997, although all models use the 1997 event in their calibrations. 

Even the 97.5th percentile prediction of QR cannot simulate precisely the turbidity spike in 1997 

(see the middle left plot of Figure 19). In brief, CQRNN outperforms QR, LR, MARS, and KNN 

in predicting the 1997 turbidity extreme. 
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Figure 19 Compare the performance of CQRNN (Composite Quantile Regression Neural Network) with QR 

(Quantile Regression), LR (Linear Regression), MARS (Multivariate Adaptive Regression Splines), KNN (K-

Nearest Neighbors) in modeling the turbidity peak at the Tesla Portal on January 3, 1997. The comparison is 

illustrated by simulations of 9 days (12/29/1996 - 01/06/1997) around the turbidity peak event at the Tesla Portal on 

January 3, 1997 in CQRNN (Composite Quantile Regression Neural Network), QR (Quantile Regression), LR 

(Linear Regression), MARS (Multivariate Adaptive Regression Spline), KNN (K-Nearest Neighbors). Left figures 

from top to bottom respectively illustrate CQRNN, QR, and three methods from LR, MARS, KNN. In top left and 

middle left figures, “2.5th”, “25th”, “50th”, “75th”, “97.5th” are respectively 2.5th, 25th, 50th, 75th, 97.5th percentile 

predictions. Right figures from top to bottom respectively show the observed turbidity levels (OBS), the Hetch 

Hetchy inflow, and the San Joaquin Pipeline (SJPL) flow during these 9 days 
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Figure 20 reveals the performances of five methods (i.e., CQRNN, QR, LR, MARS, and KNN) 

in simulating high turbidity levels at the Tesla Portal. Specifically, in the left plot of Figure 20, 

CDFs from five techniques are shown for turbidity greater than 0.6 NTU and for the cumulative 

probability above 0.95. It is found that only the 97.5th percentile prediction from CQRNN captures 

turbidity levels above 2 NTU (see the left plot of Figure 20). In addition, the CDF of median 

estimation from CQRNN is closer to the observed CDF than QR, LR, and MARS. The CDF of 

MARS does not appear in the left plot of Figure 20 because it is outside of axes’ limits, implying 

the poor performance. The high loss and AE also prove this unsatisfactory predictive 

performance (see   
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Table 5). Likewise, the CDF of median prediction from KNN follows the observed CDF well, 

but this model cannot re-produce turbidity values higher than 2 NTU. In brief, only CQRNN has 

a satisfactory predictive performance in modeling the mean and extremes (i.e., higher than 2 NTU) 

for turbidity at the Tesla Portal.  

In the right plot of Figure 20, the quantile-quantile graph compares predicted and observed 

cumulative probabilities of turbidity at the Tesla Portal above 0.65. It is noted that high quantile 

estimations (i.e., 97.5th percentile ones) of CQRNN and QR follow the 1-1 line (the black dashed 

line in Figure B) better than median predictions from LR, MARS, KNN. Thus, performances of 

high quantile estimations are superior to median estimations for high turbidity levels at the Tesla 

Portal. Furthermore, CQRNN outperforms QR for extremes whose cumulative probabilities 

greater than 0.9 since CQRNN follows the 1-1 line more tightly than QR (see the right plot of 

Figure 20). In summary, CQRNN has a better performance than other conventional techniques 

such as QR, LR, MARS, and KNN in simulating turbidity peaks at the Tesla Portal in HHRWS. 

 
Figure 20 Compare the performance of CQRNN (Composite Quantile Regression Neural Network) with QR 

(Quantile Regression), LR (Linear Regression), MARS (Multivariate Adaptive Regression Splines), KNN (K-

Nearest Neighbors) in modeling high turbidity values at the Tesla Portal. In the left figure, the comparison is 

illustrated by plotting cumulative density functions (CDFs) of high turbidity levels at the Tesla Portal (i.e., 

approximately turbidity is greater than 0.6 NTU and the cumulative probability is larger than 0.95) for median 

(“50th”) and 97.5th percentile (“97.5th”) predictions of CQRNN and QR, for median estimations of LR, MARS, 

KNN. It is noted that MARS does not appear in the left figure because its CDF exceeds the limits of horizontal and 

vertical axes, which reveals the poor performance in the simulation of turbidity peaks at the Tesla Portal. In the right 

figure, the comparison is shown by plotting predicted versus observed cumulative probabilities of high turbidity 

levels at the Tesla Portal (i.e., cumulative probabilities are higher than 0.65) 

 To emphasize the comparison by losses and AEs in   
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Table 5, Figure 21 and Figure 22 respectively show the time series and the CDF of turbidity at 

the Tesla Portal for five models (CQRNN, QR, LR, MARS, and KNN). We observe that CQRNN 

and QR models estimate the conditional median with a 95% central prediction interval generated 

by five percentile estimations (2.5th, 25th, 50th, 75th, and 97.5th). Thus, CQRNN and QR can 

simulate very high and low water quality levels. Points outside the 95% central prediction interval 

of CQRNN and QR are fewer than uncaptured points in LR, MARS, and KNN techniques (see 

Figure 21 and Figure 22). The prediction range is not available in LR, MARS, and KNN because 

they do not provide multiple quantile estimations.  

CQRNN outperforms QR based on losses and AEs in   
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Table 5. Furthermore, in Figure 21, QR has a poorer performance than CQRNN at the validation 

period after 2014 (see the middle right plot of Figure 21). Figure 22 provides a better view of 

predictive performances between CQRNN and QR. In Figure 22, the grey area of QR, representing 

the 95% prediction interval, is wider than the one of CQRNN. This finding implies QR has a higher 

degree of underestimation and overestimation respectively from 2.5th and 97.5th percentile 

estimations. In addition, QR encounters the issue of crossing quantiles, which produces 

nonphysical results. CQRNN uses simultaneous calibrations for all quantiles, which avoids this 

problem and generates more physical estimations. In brief, CQRNN has a better overall 

performance than QR, LR, MARS, and KNN in modeling median and other data quantiles.  
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Figure 21 Predicted and observed time series of turbidity at the Tesla Portal in training and validation periods for 

five methods: CQRNN (Composite Quantile Regression Neural Network), QR (Quantile Regression), LR (Linear 

Regression), MARS (Multivariate Adaptive Regression Splines), KNN (K-Nearest Neighbors). Top left, top right, 

middle left, middle right, bottom left and bottom right respectively illustrate training period of CQRNN, validation 

period of CQRNN, training period of QR, validation period of QR, training periods of LR, MARS, KNN, and 

validation periods of LR, MARS, KNN, The 50% predictive interval is the area between the 25th and 75th percentile 

models. The 95% predictive interval is the area between the 2.5th and 97.5th percentile models 
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Figure 22 Predicted and observed cumulative density functions of turbidity at the Tesla Portal in training and 

validation periods for five methods: CQRNN (Composite Quantile Regression Neural Network), QR (Quantile 

Regression), LR (Linear Regression), MARS (Multivariate Adaptive Regression Splines), KNN (K-Nearest 

Neighbors). Top left, top right, middle left, middle right, bottom left and bottom right respectively illustrate training 

period of CQRNN, validation period of CQRNN, training period of QR, validation period of QR, training periods of 

LR, MARS, KNN, and validation periods of LR, MARS, KNN, The 50% predictive interval is the area between the 

25th and 75th percentile models. The 95% predictive interval is the area between the 2.5th and 97.5th percentile 

models  
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4.2.3 TOC at the Tesla Portal 

Figure 23 and Figure 24 illustrate the comparison among five methods (CQRNN, QR, LR, 

MARS, and KNN) respectively by the time series and the CDF for TOC prediction at the Tesla 

Portal. Based on   
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Table 5, CQRNN generally outperforms other techniques in losses and AEs. We note that all 

methods can correctly represent the seasonal variation of the TOC across the training dataset. 

However, CQRNN and QR can capture more TOC high values than LR, MARS, and KNN based 

on their 97.5th percentile estimations (see Figure 23 and Figure 24).  

The grey area of QR, illustrating the 95% predictive range, is larger than CQRNN (see Figure 23 

and Figure 24). Therefore, QR seems to underestimate and overestimate TOC levels more than 

CQRNN. Furthermore, according to   
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Table 5, CQRNN outperforms QR based on losses and AEs. In conclusion, CQRNN and QR 

both perform similarly. Additionally, CQRNN is slightly better (but it should not be significant). 

The slight difference between CQRNN and QR could result from the fact that TOC data at the 

Tesla Portal does not have extremes (the rain-on-snow event in 1997) like turbidity at the Tesla 

Portal and at the O’Shaughnessy Dam. Therefore, to simulate a less variable dataset like TOC at 

the Tesla Portal, a linear-regression-based approach (i.e., QR) can still perform well. 
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Figure 23 Predicted and observed time series of TOC at the Tesla Portal in training and validation periods for five 

methods: CQRNN (Composite Quantile Regression Neural Network), QR (Quantile Regression), LR (Linear 

Regression), MARS (Multivariate Adaptive Regression Splines), KNN (K-Nearest Neighbors). Top left, top right, 

middle left, middle right, bottom left and bottom right respectively illustrate training period of CQRNN, validation 

period of CQRNN, training period of QR, validation period of QR, training periods of LR, MARS, KNN, and 

validation periods of LR, MARS, KNN, The 50% predictive interval is the area between the 25th and 75th percentile 

models. The 95% predictive interval is the area between the 2.5th and 97.5th percentile models 
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Figure 24 Predicted and observed cumulative density functions of TOC at the Tesla Portal in training and validation 

periods for five methods: CQRNN (Composite Quantile Regression Neural Network), QR (Quantile Regression), 

LR (Linear Regression), MARS (Multivariate Adaptive Regression Splines), KNN (K-Nearest Neighbors). Top left, 

top right, middle left, middle right, bottom left and bottom right respectively illustrate training period of CQRNN, 

validation period of CQRNN, training period of QR, validation period of QR, training periods of LR, MARS, KNN, 

and validation periods of LR, MARS, KNN, The 50% predictive interval is the area between the 25th and 75th 

percentile models. The 95% predictive interval is the area between the 2.5th and 97.5th percentile models
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The developed CQRNN prediction model for TOC at the Tesla Portal has also been compared 

with the regression model currently used by SFPUC. This model is based on a linear regression 

model and conducted in an annual time step (Rob Clark 2017): 

𝑊𝑎𝑡𝑒𝑟 𝑦𝑒𝑎𝑟 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑒𝑠𝑙𝑎 𝑇𝑂𝐶 [𝑚𝑔/𝐿] = 1.3103 + (0.03476 × 𝑍1) − (0.02807 × 𝑍2) 

(Rob Clark 2017) 

𝑍1: Current water-year inflow (100K acre-feet/year) 

𝑍2: Prior water-year inflow (100K acre-feet/year) 

Figure 25 and Figure 26 show CQRNN has a better predictive performance in simulating the 

water-year TOC average than the SFPUC’s linear regression. In particular, CQRNN follows the 

variability of observed TOC better than the linear regression. Moreover, it has a mean absolute 

error lower than the linear regression’s one. 

 
Figure 25 Compare CQRNN with the SFPUC’s annual regression model by the time series plot for TOC at the Tesla 

Portal. MAE is the mean absolute error between predicted and observed TOC values 
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 dd 

Figure 26 Compare CQRNN with the SFPUC’s annual regression model by the scatter plot for TOC at the Tesla 

Portal. MAE is the mean absolute error between predicted and observed TOC values 

In summary, CQRNN outperforms the four remaining methods (i.e., QR, LR, MARS, and 

KNN) based on losses and AEs. Additionally, it produces a median estimation with a 95% 

predictive range, assisting in predicting extraordinarily high and low values. All non-crossing 

conditional quantiles are close to true quantiles thanks to simultaneous simulations in CQRNN. 

Also, CQRNN can capture the turbidity extreme in 1997, while other methods cannot simulate this 

critical event. Thus, this model is helpful for water managers in modeling both means and peaks 

of water quality. 

4.3 Contribution of the predictors to the CQRNN predictions 

The Relative Importance metric (equation 7) is a way to assess the contribution from each 

predictor to the predicted value of considered water quality indicators. To complement the 

discussion of the relative importance (RI) metric, scatterplots between each predictor and turbidity, 

and TOC are given in Appendix 6.1.  

For turbidity at the O’Shaughnessy Dam, the relative importance of predictors is shown in 

Figure 27. The primary predictors, which account for around 20% of relative importance, are dry 

days in the previous water year and discharges in the current water year. It emphasizes the 

importance of the annual water cycle for the turbidity prediction at the O’Shaughnessy Dam. Dry 

days of the prior water year refer to droughts, which can cause material accumulation in the 

watershed. Then, these materials are flushed out based on the hydrological condition during the 

current water year, generating suspended solids. The air temperature has the third-largest relative 

importance since it controls the snow melting stream since the Upcountry Watershed is a snow-

dominated basin. 
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Figure 27 Predictor relative importance from CQRNN for turbidity at the O’Shaughnessy Dam model. Q_HH_cfd is 

the Hetch Hetchy inflow (Cubic feet per day, CFD). Ta_HH_C is Hetch Hetchy air temperature (Degree Celsius, 

°C). V_HH_af is the Hetch Hetchy storage (Acre-foot, AF). SR_HH_cfs is the Hetch Hetchy spill and release 

(Cubic foot per second, CFS). ADD_HH_sum1 is cumulative dry days in the previous water year (Days). 

Q_HH_cfd_sum1 is cumulative flows in the previous water year (Cubic foot, CF). ADD_HH_sum is cumulative dry 

days until the predicted day in the current water year (Days). Q_HH_cfd_sum is cumulative flows until the predicted 

day in the current water year (Cubic foot, CF). ADD_HH is the Hetch Hetchy antecedent dry days (days). 

Q_HH_cfd1 is the one-day-prior Hetch Hetchy inflow (Cubic foot, CFD) 

Figure 28 illustrates the contribution from each predictor to the predicted turbidity at the Tesla 

Portal. Primary predictors for turbidity at the Tesla Portal, which account for more than 25% of 

relative importance, are discharges and dry days of the previous water year. The combination of 

droughts in material accumulation and stream flows in flushing triggers the turbidity level in the 

Hetch Hetchy Reservoir. This effect of the prior water year is significant for predicting turbidity 

because water is stored in the Hetch Hetchy Reservoir, a big lake and has a long-term hydrological 

memory. The third significant predictor is SJPL, whose relative importance is 15%. The rate of 

pipelines is crucial in simulating turbidity since higher water delivery brings more solids into 

pipelines and vice versa. Thus, the amount of water in SJPL governs suspended solids at the Tesla 

Portal. 
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Figure 28 Predictor relative importance from CQRNN for turbidity at the Tesla Portal. Q_HH_cfd is the Hetch 

Hetchy inflow (Cubic feet per day, CFD). Ta_HH_C is Hetch Hetchy air temperature (Degree Celsius, °C). 

Tw_Tesla_C is the Tesla water temperature (Degree Celsius, °C). SJPL_mgd is the San Joaquin Pipeline flow 

(Millions of gallons per day, MGD). V_HH_af is the Hetch Hetchy storage (Acre-foot, AF). SR_HH_cfs is the 

Hetch Hetchy spill and release (Cubic foot per second, CFS). CPT_cfs is the Canyon Power Tunnel flow (Cubic foot 

per second, CFS). ADD_HH_sum1 is cumulative dry days in the previous water year (Days). Q_HH_cfd_sum1 is 

cumulative flows in the previous water year (Cubic foot, CF). ADD_HH_sum is cumulative dry days until the 

predicted day in the current water year (Days). Q_HH_cfd_sum is cumulative flows until the predicted day in the 

current water year (Cubic foot, CF). ADD_HH is the Hetch Hetchy antecedent dry days (days). Q_HH_cfd1 is the 

one-day-prior Hetch Hetchy inflow (Cubic foot, CFD) 

Figure 29 shows the relative importance of predictors for modeling TOC at the Tesla Portal. 

The flow in the previous water year accounts for more than 25%, which is the most important in 

predicting TOC. The second vital predictors are the water temperature at the Tesla Portal and daily 

flow. They have similar relative importance values, approximately more than 15%. These findings 

are consistent with other papers, which also stated that discharges and temperatures control TOC. 

Clair and Ehrman (1998) and Ågren et al. (2007) found that the TOC tendency mirrors stream 

flows. Moreover, a higher temperature stimulates the ecosystem’s biomass growth, contributing 

to the carbon pool (Evans, Monteith, and Cooper 2005; Ågren et al. 2007; Weyhenmeyer and 

Karlsson 2009; and Pagano, Bida, and Kenny 2014); therefore, TOC increases when temperature 

enhances 
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Figure 29 Predictor relative importance from CQRNN for total organic carbon (TOC) at the Tesla Portal. Q_HH_cfd 

is the Hetch Hetchy inflow (Cubic feet per day, CFD). Ta_HH_C is Hetch Hetchy air temperature (Degree Celsius, 

°C). Tw_Tesla_C is the Tesla water temperature (Degree Celsius, °C). SJPL_mgd is the San Joaquin Pipeline flow 

(Millions of gallons per day, MGD). V_HH_af is the Hetch Hetchy storage (Acre-foot, AF). SR_HH_cfs is the 

Hetch Hetchy spill and release (Cubic foot per second, CFS). CPT_cfs is the Canyon Power Tunnel flow (Cubic foot 

per second, CFS). ADD_HH_sum1 is cumulative dry days in the previous water year (Days). Q_HH_cfd_sum1 is 

cumulative flows in the previous water year (Cubic foot, CF). ADD_HH_sum is cumulative dry days until the 

predicted day in the current water year (Days). Q_HH_cfd_sum is cumulative flows until the predicted day in the 

current water year (Cubic foot, CF). ADD_HH is the Hetch Hetchy antecedent dry days (days). Q_HH_cfd1 is the 

one-day-prior Hetch Hetchy inflow (Cubic foot, CFD) 

Although the RI metric is interesting as it directly evaluates the relative contribution for all 

predictors by analyzing the model parameters, it suffers from a major shortcoming. The RI metrics 

estimated from the model parameters indeed result from the training of the model. It is not possible 

to predict the relative importance of a specific predictor within a modified context. It is then 

necessary to remember that the relative importance metric discussed in this section for each 

predictor is relevant for the historical period. Still, it could not be for future uncertain conditions. 
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5 Conclusion 

This technical report describes technically data-driven models that aim to predict turbidity at 

the O’Shaughnessy Dam, turbidity, and TOC at the Tesla Portal in the HHRWS. The Composite 

Quantile Regression Neural Network (CQRNN) produces low averaged quantile regression error 

functions over 2.5th, 25th, 50th, 75th, 97.5th percentiles for turbidity and TOC models in all predicted 

locations. It is because turbidity and TOC are water quality indicators primarily being affected by 

physical factors included in the list of predictors used as input to the developed CQRNN. 

Furthermore, the CQRNN can capture nonlinear processes between predictors and predictands, 

which is the case for the formation of turbidity and TOC in the HHRWS. Five quantiles of the 

distribution of the considered water quality indicators have been considered in this work (2.5th, 

25th, 50th, 75th, and 97.5th percentiles), predicting an estimate of the conditional median and a 95% 

central prediction interval (Cannon 2011). Finally, this estimate helps models capture extreme 

water quality values crucial for water quality control.  

In conclusion, models are successfully built for turbidity at the O’Shaughnessy Dam and for 

turbidity and TOC at the Tesla Portal, a primary compliant location in the HHRWS. In comparison 

with other models such as linear regression, quantile regression, multivariate adaptive regression 

spline, and K-nearest neighbors, CQRNN outperforms other techniques in terms of CQRNN’s loss 

(averaged quantile regression error function over 2.5th, 25th, 50th, 75th, 97.5th percentiles, described 

in equation 6). The next step for using this model is conducting the climate stress test on water 

quality in the HHRWS, particularly for turbidity at the O’Shaugnessy Dam, turbidity, and TOC at 

the Tesla portal, the primary compliant point of water quality in the HHRWS. This work is served 

as a step in the vulnerability assessment on the HHRWS.   
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6 Appendices:  

6.1 Relation between predictand and predictors 

6.1.1 Turbidity at O’Shaughnessy Dam 

 

Figure 30 Relationships between turbidity at O’Shaughnessy Dam and predictors. OBS is the observed turbidity, 

PRE is the predicted turbidity. Short names of predictors are referred to Table 2 
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6.1.2 Turbidity at the Tesla Portal 

 
Figure 31 Relationships between turbidity at the Tesla Portal and predictors. OBS is the observed turbidity, PRE is 

the predicted turbidity. Short names of predictors are referred to Table 2 

6.1.3 TOC at the Tesla Portal 

 
Figure 32 Relationships between TOC at the Tesla Portal and predictors. OBS is the observed TOC, PRE is the 

predicted TOC. Short names of predictors are referred to Table 2  
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6.2 Relation between air temperature and water temperature 

 

Figure 33 Linear relationship between water temperature at the Tesla Portal in degrees Celsius (Tw_Tesla_C) and 

air temperature at Hetch Hetchy in degrees Celsius (Ta_HH_C) with R2 = 0.46   
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6.3 Recurrence interval of high turbidity event in 1997 

We fit different distributions to annual maximum daily turbidity in the historical period 1997-

2014 by L-moments (Hosking, Wallis, and Wood 1985), a linear combination of order statistics. 

This technique is used to define parameters of fitted distributions on a data sample. Figure 34 

reveals the best-fitted distributions for annual maximum daily turbidity at Tesla, which are 

Generalized Extreme-value and Generalized Logistic. Figure 35 compares the exceedance 

probability curves between the empirical distribution and fitted distributions. The empirical 

distribution is defined by the Hazen method (Hosking and Wallis 1995). Generalized Extreme-

value and Generalized Logistic are also the best-fitted curves based on Figure 35. By using 

Generalized Extreme-value and Generalized Logistic, we compute the exceedance probability 

(frequency of occurrence) of 0.015 and the return period of 67 years for the 1997 turbidity event 

(the highest turbidity level ever recorded at Tesla). We also calculate the exceedance probability 

and the return period for the second and the third highest turbidity levels ever recorded at Tesla, 

which are respectively 0.08 and 12 years (turbidity level of 2.65 NTU on 2000-11-22), and 0.09 

and 11 years (turbidity level of 2.5 NTU on 1996-11-24). 

 
Figure 34 The L-moment ratio diagram of Generalized Logistics (GLO), Generalized Extreme-value (GEV), 

Generalized Pareto (GPA), Generalized Normal (GNO), Pearson type III (PE3), Logistic Distribution (L), Normal 

Distribution (N), Exponential Distribution (E), Gumbel Distribution (G), and Uniform Distribution (U). Lines are L-

kurtosis and L-skewness parameters calculated from fitted distributions; while the red dot represents L-kurtosis and 

L-skewness parameters computed from the observed turbidity distribution 
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Figure 35 Compare exceedance probability curves of annual maximum daily turbidity between empirical 

distribution (ED) represented as black dots and lines which are fitted distributions including Generalized Extreme-

value (GEV), Generalized Logistics (GLO), Normal Distribution (NOR), Exponential Distribution (EXP), Gamma 

Distribution (GAM), Generalized Pareto (GPA), Generalized Normal (GNO), Gumbel Distribution (GUM), 

Lognormal Distribution (LN3), Pearson type III (PE3), Weibull Distribution (WEI). The GLO line overlays the 

GEV line in the figure 

  



69 

 

7 References 

Ågren, Anneli, Mats Jansson, Hans Ivarsson, Kevin Bishop, and Jan Seibert. 2007. “Seasonal and 

Runoff-Related Changes in Total Organic Carbon Concentrations in the River Öre, 

Northern Sweden.” Aquatic Sciences. https://doi.org/10.1007/s00027-007-0943-9. 

Bowden, Gavin J., Graeme C. Dandy, and Holger R. Maier. 2005. “Input Determination for Neural 

Network Models in Water Resources Applications. Part 1—Background and 

Methodology.” Journal of Hydrology 301 (1): 75–92. 

https://doi.org/10.1016/j.jhydrol.2004.06.021. 

Brown, Casey, Yonas Ghile, Mikaela Laverty, and Ke Li. 2012. “Decision Scaling: Linking 

Bottom-up Vulnerability Analysis with Climate Projections in the Water Sector.” Water 

Resources Research 48 (9). https://doi.org/10.1029/2011WR011212. 

Cannon, Alex J. 2011. “Quantile Regression Neural Networks: Implementation in R and 

Application to Precipitation Downscaling.” Computers & Geosciences 37 (9): 1277–84. 

https://doi.org/10.1016/j.cageo.2010.07.005. 

———. 2018. “Non-Crossing Nonlinear Regression Quantiles by Monotone Composite Quantile 

Regression Neural Network, with Application to Rainfall Extremes.” Stochastic 

Environmental Research and Risk Assessment 32 (11): 3207–25. 

https://doi.org/10.1007/s00477-018-1573-6. 

———. 2019. Qrnn: Quantile Regression Neural Network (version 2.0.5). https://CRAN.R-

project.org/package=qrnn. 

Chau, Kwok-wing. 2006. “A Review on Integration of Artificial Intelligence into Water Quality 

Modelling.” Marine Pollution Bulletin 52 (7): 726–33. 

https://doi.org/10.1016/j.marpolbul.2006.04.003. 

Clair, Thomas A., and James M. Ehrman. 1998. “Using Neural Networks to Assess the Influence 

of Changing Seasonal Climates in Modifying Discharge, Dissolved Organic Carbon, and 

Nitrogen Export in Eastern Canadian Rivers.” Water Resources Research 34 (3): 447–55. 

https://doi.org/10.1029/97WR03472. 

Costa, Cássia Monteiro da Silva Burigato, Izabel Rodrigues Leite, Aleska Kaufmann Almeida, 

and Isabel Kaufmann de Almeida. 2021. “Choosing an Appropriate Water Quality 

Model—a Review.” Environmental Monitoring and Assessment 193 (1): 38. 

https://doi.org/10.1007/s10661-020-08786-1. 

Cunningham, Pádraig, John Carney, and Saji Jacob. 2000. “Stability Problems with Artificial 

Neural Networks and the Ensemble Solution.” Artificial Intelligence in Medicine 20 (3): 

217–25. https://doi.org/10.1016/S0933-3657(00)00065-8. 

Delpla, I., A. -V. Jung, E. Baures, M. Clement, and O. Thomas. 2009. “Impacts of Climate Change 

on Surface Water Quality in Relation to Drinking Water Production.” Environment 

International 35 (8): 1225–33. https://doi.org/10.1016/j.envint.2009.07.001. 

Dhillon, Gurbir Singh, and Shreeram Inamdar. 2013. “Extreme Storms and Changes in Particulate 

and Dissolved Organic Carbon in Runoff: Entering Uncharted Waters?” Geophysical 

Research Letters 40 (7): 1322–27. https://doi.org/10.1002/grl.50306. 



70 

 

Dreiseitl, Stephan, and Lucila Ohno-Machado. 2002. “Logistic Regression and Artificial Neural 

Network Classification Models: A Methodology Review.” Journal of Biomedical 

Informatics 35 (5): 352–59. https://doi.org/10.1016/S1532-0464(03)00034-0. 

Evans, C. D., D. T. Monteith, and D. M. Cooper. 2005. “Long-Term Increases in Surface Water 

Dissolved Organic Carbon: Observations, Possible Causes and Environmental Impacts.” 

Environmental Pollution, Recovery from acidificationin the UK: Evidence from 15 years 

of acid waters monitoring, 137 (1): 55–71. https://doi.org/10.1016/j.envpol.2004.12.031. 

Francke, T., J. A. López‐Tarazón, and B. Schröder. 2008. “Estimation of Suspended Sediment 

Concentration and Yield Using Linear Models, Random Forests and Quantile Regression 

Forests.” Hydrological Processes 22 (25): 4892–4904. https://doi.org/10.1002/hyp.7110. 

Friedman, Jerome H. 1991. “Multivariate Adaptive Regression Splines.” The Annals of Statistics 

19 (1): 1–67. https://doi.org/10.1214/aos/1176347963. 

Futter, Martyn N., and Heleen A. de Wit. 2008. “Testing Seasonal and Long-Term Controls of 

Streamwater DOC Using Empirical and Process-Based Models.” The Science of the Total 

Environment 407 (1): 698–707. https://doi.org/10.1016/j.scitotenv.2008.10.002. 

Gevrey, Muriel, Ioannis Dimopoulos, and Sovan Lek. 2003. “Review and Comparison of Methods 

to Study the Contribution of Variables in Artificial Neural Network Models.” Ecological 

Modelling, Modelling the structure of acquatic communities: concepts, methods and 

problems., 160 (3): 249–64. https://doi.org/10.1016/S0304-3800(02)00257-0. 

Goh, A. T. C. 1995. “Back-Propagation Neural Networks for Modeling Complex Systems.” 

Artificial Intelligence in Engineering 9 (3): 143–51. https://doi.org/10.1016/0954-

1810(94)00011-S. 

Heddam, Salim, and Ozgur Kisi. 2018. “Modelling Daily Dissolved Oxygen Concentration Using 

Least Square Support Vector Machine, Multivariate Adaptive Regression Splines and M5 

Model Tree.” Journal of Hydrology 559 (April): 499–509. 

https://doi.org/10.1016/j.jhydrol.2018.02.061. 

Hosking, J. R. M., and J. R. Wallis. 1995. “A Comparison of Unbiased and Plotting-Position 

Estimators of L Moments.” Water Resources Research 31 (8): 2019–25. 

https://doi.org/10.1029/95WR01230. 

Hosking, J. R. M., J. R. Wallis, and E. F. Wood. 1985. “Estimation of the Generalized Extreme-

Value Distribution by the Method of Probability-Weighted Moments.” Technometrics 27 

(3): 251–61. https://doi.org/10.1080/00401706.1985.10488049. 

HRG LTVA. 2021. “Long Term Vulnerability Assessment and Adaptation Plan for the SFPUC 

Water Enterprise – Phase 1.” Hydrosystems Research Group, University of Massachusetts, 

Amherst, Amherst, Massachusetts. 

HRG TR4. 2021. “Technical Report 4: San Francisco Water System Model.” Hydrosystems 

Research Group, University of Massachusetts, Amherst, Amherst, Massachusetts. 

Kemp, Stanley J., Patricia Zaradic, and Frank Hansen. 2007. “An Approach for Determining 

Relative Input Parameter Importance and Significance in Artificial Neural Networks.” 

Ecological Modelling 204 (3): 326–34. https://doi.org/10.1016/j.ecolmodel.2007.01.009. 



71 

 

Khalil, B., T. B. M. J. Ouarda, and A. St-Hilaire. 2011. “Estimation of Water Quality 

Characteristics at Ungauged Sites Using Artificial Neural Networks and Canonical 

Correlation Analysis.” Journal of Hydrology 405 (3): 277–87. 

https://doi.org/10.1016/j.jhydrol.2011.05.024. 

Koenker, Roger, Stephen Portnoy (Contributions to Censored QR code), Pin Tian Ng 

(Contributions to Sparse QR code), Achim Zeileis (Contributions to dynrq code essentially 

identical to his dynlm code), Philip Grosjean (Contributions to nlrq code), Cleve Moler 

(author of several linpack routines), and Brian D. Ripley (Initial (2001) R. port from S. (to 

my everlasting shame-- how could I. have been so slow to adopt R!) and for numerous 

other suggestions and useful advice). 2019. Quantreg: Quantile Regression (version 5.54). 

https://CRAN.R-project.org/package=quantreg. 

Koenker, Roger W., and Gilbert Bassett. 1978. “Regression Quantiles.” Econometrica 46 (1): 33–

50. 

Lall, Upmanu, and Ashish Sharma. 1996. “A Nearest Neighbor Bootstrap For Resampling 

Hydrologic Time Series.” Water Resources Research 32 (3): 679–93. 

https://doi.org/10.1029/95WR02966. 

Lee, Byoung-Hwa, and Miklas Scholz. 2006. “A Comparative Study: Prediction of Constructed 

Treatment Wetland Performance with k-Nearest Neighbors and Neural Networks.” Water, 

Air, and Soil Pollution 174 (1): 279–301. https://doi.org/10.1007/s11270-006-9113-2. 

Leisch, S. original by Trevor Hastie & Robert Tibshirani Original R. port by Friedrich, and Kurt 

Hornik and Brian D. Ripley. 2017. Mda: Mixture and Flexible Discriminant Analysis 

(version 0.4-10). https://CRAN.R-project.org/package=mda. 

Maier, Holger R., and Graeme C. Dandy. 2000. “Neural Networks for the Prediction and 

Forecasting of Water Resources Variables: A Review of Modelling Issues and 

Applications.” Environmental Modelling & Software 15 (1): 101–24. 

https://doi.org/10.1016/S1364-8152(99)00007-9. 

Mukundan, Rajith, Donald C. Pierson, Lucien Wang, Adao H. Matonse, Nihar R. Samal, Mark S. 

Zion, and Elliot M. Schneiderman. 2013. “Effect of Projected Changes in Winter 

Streamflow on Stream Turbidity, Esopus Creek Watershed in New York, USA.” 

Hydrological Processes 27 (21): 3014–23. https://doi.org/10.1002/hyp.9824. 

Najah, A., A. El-Shafie, O. A. Karim, and Amr H. El-Shafie. 2013. “Application of Artificial 

Neural Networks for Water Quality Prediction.” Neural Computing and Applications 22 

(1): 187–201. https://doi.org/10.1007/s00521-012-0940-3. 

Null, Sarah E., and Jay R. Lund. 2006. “Reassembling Hetch Hetchy: Water Supply Without 

O’shaughnessy Dam1.” JAWRA Journal of the American Water Resources Association 42 

(2): 395–408. https://doi.org/10.1111/j.1752-1688.2006.tb03846.x. 

Oña, Juan de, and Concepción Garrido. 2014. “Extracting the Contribution of Independent 

Variables in Neural Network Models: A New Approach to Handle Instability.” Neural 

Computing and Applications 25 (3): 859–69. https://doi.org/10.1007/s00521-014-1573-5. 

Pagano, Todd, Morgan Bida, and Jonathan E. Kenny. 2014. “Trends in Levels of Allochthonous 

Dissolved Organic Carbon in Natural Water: A Review of Potential Mechanisms under a 

Changing Climate.” Water 6 (10): 2862–97. https://doi.org/10.3390/w6102862. 



72 

 

Pentoś, Katarzyna. 2016. “The Methods of Extracting the Contribution of Variables in Artificial 

Neural Network Models – Comparison of Inherent Instability.” Computers and Electronics 

in Agriculture 127 (September): 141–46. https://doi.org/10.1016/j.compag.2016.06.010. 

Rob Clark. 2017. “Wet/Dry Year Impacts on Hetch Hetchy Source Water Quality.” November 8. 

Samal, Nihar R., Adao H. Matonse, Rajith Mukundan, Mark S. Zion, Donald C. Pierson, Rakesh 

K. Gelda, and Elliot M. Schneiderman. 2013a. “Modelling Potential Effects of Climate 

Change on Winter Turbidity Loading in the Ashokan Reservoir, NY.” Hydrological 

Processes 27 (21): 3061–74. https://doi.org/10.1002/hyp.9910. 

———. 2013b. “Modelling Potential Effects of Climate Change on Winter Turbidity Loading in 

the Ashokan Reservoir, NY.” Hydrological Processes 27 (21): 3061–74. 

https://doi.org/10.1002/hyp.9910. 

Shu, C., and T. B. M. J. Ouarda. 2007. “Flood Frequency Analysis at Ungauged Sites Using 

Artificial Neural Networks in Canonical Correlation Analysis Physiographic Space.” 

Water Resources Research 43 (7). https://doi.org/10.1029/2006WR005142. 

Sinshaw, Tadesse A., Cristiane Q. Surbeck, Hakan Yasarer, and Yacoub Najjar. 2019. “Artificial 

Neural Network for Prediction of Total Nitrogen and Phosphorus in US Lakes.” Journal 

of Environmental Engineering 145 (6): 04019032. 

https://doi.org/10.1061/(ASCE)EE.1943-7870.0001528. 

Taylor, James W. 2000. “A Quantile Regression Neural Network Approach to Estimating the 

Conditional Density of Multiperiod Returns.” Journal of Forecasting 19 (4): 299–311. 

https://doi.org/10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V. 

Tiyasha, Tran Minh Tung, and Zaher Mundher Yaseen. 2020. “A Survey on River Water Quality 

Modelling Using Artificial Intelligence Models: 2000–2020.” Journal of Hydrology 585 

(June): 124670. https://doi.org/10.1016/j.jhydrol.2020.124670. 

Weyhenmeyer, Gesa A., and Jan Karlsson. 2009. “Nonlinear Response of Dissolved Organic 

Carbon Concentrations in Boreal Lakes to Increasing Temperatures.” Limnology and 

Oceanography 54 (6part2): 2513–19. https://doi.org/10.4319/lo.2009.54.6_part_2.2513. 

Wilkinson, G. N., and C. E. Rogers. 1973. “Symbolic Description of Factorial Models for Analysis 

of Variance.” Applied Statistics 22 (3): 392. https://doi.org/10.2307/2346786. 

Wing, Max Kuhn Contributions from Jed, Steve Weston, Andre Williams, Chris Keefer, Allan 

Engelhardt, Tony Cooper, Zachary Mayer, et al. 2019. Caret: Classification and 

Regression Training (version 6.0-84). https://CRAN.R-project.org/package=caret. 

Xu, Qifa, Kai Deng, Cuixia Jiang, Fang Sun, and Xue Huang. 2017. “Composite Quantile 

Regression Neural Network with Applications.” Expert Systems with Applications 76 

(June): 129–39. https://doi.org/10.1016/j.eswa.2017.01.054. 

Xu, Qifa, Xi Liu, Cuixia Jiang, and Keming Yu. 2016. “Quantile Autoregression Neural Network 

Model with Applications to Evaluating Value at Risk.” Applied Soft Computing 49 

(December): 1–12. https://doi.org/10.1016/j.asoc.2016.08.003. 

 


