Developers and property managers can use these sample questions for electric vehicle (EV) charging equipment vendors to better understand if the vendor has an appropriate solution for their projects. This fact sheet also provides real-world examples of successful EV charging installations in the San Francisco Bay Area.

Getting Up to Speed
This fact sheet assumes you’re familiar with EV chargers (known as EV supply equipment, or “EVSE”) and have at least a preliminary scope of work for your electric vehicle infrastructure (EVI). If you need technical support to develop an EVI scope for your project, the EV Charge SF program’s Technical Assistance team is here to support enrolled projects. Review these other fact sheets to get up to speed with EVSE and EVI:

- Electric Vehicle Charging Level Options and Considerations
- EV Charger Ownership, Management, and Billing

EVSE Vendor Questions
The type of EV charging equipment and the needed service in the EVI scope will largely determine which EVSE vendor(s) can meet your project’s needs. Your scope may include a mix of equipment (EV dedicated outlets and/or EV charging stations with cords and ports) with different charging levels (Level 1, Low Power Level 2, Level 2, and DCFC) to meet your tenants’ needs. Network software (if required for billing and tracking users, reporting usage, etc.) may be procured from the same - or different - vendor as the hardware. Vendor offerings continue to evolve as the EV industry grows. Asking the right questions will help you select the best-aligned vendor or vendors to meet your requirements.

<table>
<thead>
<tr>
<th>Vendor Product Lines</th>
</tr>
</thead>
</table>
| **a)** Does the vendor supply all the equipment in the site’s scope of work?
You may need more than one vendor depending on the specifics of your project. |
| **b)** If your project requires an “Automatic Load Management System” (ALMS), does the vendor offer an appropriate solution?
An ALMS lets you maximize the number of electrified parking stalls by fully utilizing available electric capacity. Costs for an |
ALMS are typically included in monthly subscription fees, as well as being a part of the upfront cost of the hardware. Some EVSE vendors offer different pricing tiers, with the ALMS only being included in their highest rate tier.

Cords and Connectors

a) Does the vendor offer dual and single port (i.e., dual and single connector) EVSE options?

While charging stations with two or more connectors are more expensive than single connector charging stations, installing a “dual port” EVSE between two parking spaces can take up less space and reduce installation costs due to reduced trenching, conduit, and wiring.

b) What types of ports does the EVSE have and does the EVSE vendor offer adapters for different types of ports?

Do the EVSE come with the option of NACS connectors or adaptors?
The SAE J1772 ("J-plug") and Combined Charging System (CCS) are the current EVSE connectors which most EVs manufactured in North America are designed for. However, a growing list of EV manufacturers have announced they will begin designing for the SAE J3400 port, which is based on Tesla’s “North American Charging Standard” (NACS) design, on their EVs in coming years. It is important to ensure that your vendor can support the needs of the future users, assuming most future EVs will utilize the J3400/NACS connector type.

c) Does the EVSE come with cord management options like retractable cords? If not, what is the additional price per unit for this?

d) How does cord length impact pricing?

While typical cord lengths are ~18’, some parking configurations could need a longer cord. Though more expensive, the cord could improve accessibility and users’ satisfaction.

Payment

a) If the scope includes “Smart” (network connected) EVSE with user payment to access the EVSE, how does the EVSE accept payment?

- Can the EV driver pay for the charging session via a smartphone app, on the charger itself (via credit card insert, tap, and/or swipe), and/or with an RFID fob?
- How easy is it for the property manager to set the fee schedule for all payment options and methods?
- How does the charger display pricing/fees?

Shared chargers in California charging a fee require a physical payment method like a credit card reader. Be aware that payment options and other factors may require the EVSE to meet National Institute of Standards and Technology (NIST) and/or California Type Evaluation Program (CTEP) requirements.
User Experience

a) What is the EV driver’s experience with the EVSE like?
 - What is the user experience like at the station and within the digital format (e.g., the charger’s related smart phone app and/or mobile website)?
 - How does the EVSE handle EV drivers’ expectation of the state of their EV battery’s charge when they depart?
 - Is a queue feature available, with charging scheduled to optimally meet both the driver’s and operational cost needs?

Maintenance and Networking

a) How will you be able to tell if the EVSE goes "off-line", i.e., that it is in a “fault” state?

b) For "Smart" EVSE: What remote monitoring capabilities are available to track usage, status, revenue, faults, and maintenance issues?
 “Smart” EVSE gives you remote monitoring and other software features, but requires a monthly fee to a vendor, while “non-smart” (non-networked) EVSE lacks remote monitoring, but doesn’t require monthly vendor subscription fees.

c) How is EVSE maintenance handled and what warranties does the vendor offer?
 - If they offer a warranty, what is covered and for how long?
 - Do warranty options vary by EVSE model?
 - Who will be responsible for managing warranty or non-warranty work?
 - Can components of the charger be repaired/replaced or does the whole unit need to be swapped out when there are hardware issues?
 - Can the building’s on-site maintenance staff be trained to repair or replace the EVSE? Will that impact the warranties?

d) If you are not happy with the EVSE software provider, does the EVSE allow you to switch to a different EVSE software provider in the future?
 EVSE that is “Open Charge Point Protocol” (OCPP) compliant should give you the option of switching to another OCPP compliant EVSE software provider, similar to how you can keep your smartphone when switching carriers. Additional information on OCPP is available at https://www.openchargealliance.org/.

Important Specs and Branding

a) What compliance certifications does the vendor’s EVSE have? Are the vendor’s products certified to meet relevant safety standards by a nationally recognized testing laboratory?
 The American National Standards Institute (ANSI) and Underwriters Laboratories (UL) have defined three main product safety standards for EV charging equipment: ANSI/UL 2202 (for DCFC), ANSI/UL 2594 (for Level 2), and UL 9741 (for bidirectional charging). Any nationally recognized testing laboratory (NRTL) can confirm compliance with these standards. Other certifications are required for certain projects, such as the California Department of Food and Agriculture, Division of Measurement Standards certification for meter accuracy on equipment that will be used for energy-derived user fees.

b) Can the product line be exposed to harsh weather (rain, extreme temperatures, and/or sunlight) or does it require protection?
 Electrical equipment that can withstand harsh environments have a National Electrical Manufacturers Association (NEMA) “outdoor rating” of 3R or better.

c) What are the vendor’s privacy and data standards and security policies?
 - If the EVSE is connected to cloud-based computing systems, does it comply with SOC-2 (Systems and Organizations Controls 2), a set of standards for protecting customer data in the cloud?
 - If the EVSE is collecting credit card payments, does it comply with Payment Card Industry (PCI) standards, which are mandated by credit card companies to help ensure the security of credit card transactions?

d) Does the vendor enable adding your brand and/or customizing the chargers?
 - Can you put your organization’s (or company’s) branding on the EVSE?
 - Does the EVSE have a large digital display where you could display user information and/or advertising?

e) What safeguards from vandalism or theft prevention features does the EVSE have?
Case Studies

Check out this case study for a San Francisco real estate developer’s experience installing EVSE in their new construction condominium project with support from the EV Charge SF program. Here are some summaries of other real-world EVSE installations in the San Francisco Bay Area.

DISCLAIMER: The EV Charge SF Program is vendor-agnostic. Any mention of a specific product used in a case study should not be seen as an endorsement by the program.

Case Study #1: EV Charging in Hospital Parking Garage

<table>
<thead>
<tr>
<th>Type of Building</th>
<th>Existing hospital parking garage (staff and visitor)</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Existing Parking Spaces</td>
<td>1,080 (485 visitor, 595 staff)</td>
</tr>
<tr>
<td>Goal</td>
<td>Meet current EV charging needs of visitors (typical dwell times of 1-4 hours) and staff (typical dwell times 8-12 hours) and prepare for future EV charging needs</td>
</tr>
<tr>
<td>Existing EVSE</td>
<td>None</td>
</tr>
<tr>
<td>EVSE Installed</td>
<td>(15) Level 2 Chargers</td>
</tr>
<tr>
<td>Make & Model</td>
<td>ChargePoint CT4000 Level 2 Commercial Charging Station</td>
</tr>
</tbody>
</table>

Features

- “Smart” (network connected)
- OCPP compliant
- Bollard mount (self-supporting pedestal mount)
- Electrical output: 30A, 7.2KW at 240V
- SAE J1772 (“J-plug”) connectors
- 18’ cables
- RFID fob, tap-to-pay, and smartphone app payment options
- Outdoor rating NEMA 3R

New Electric Vehicle Infrastructure (EVI) Installed

- New 225KVA, 480-120/208V, 3-phase transformer
- New 600A, 208/120V, 3-phase, 4W, panelboard with 2 sections

EV Capable (future-proofed spaces with panel capacity, conduit, and wiring)

- (7) Level 2

ADA Compliant

- 2 EV Ready (1 Van Accessible, 1 Standard Accessible)

EVSE Load Management

- Automatic Load Management System (ALMS)
Case study #2: EV Charging in a Commercial Office Building Garage

<table>
<thead>
<tr>
<th>Type of Building</th>
<th>Existing commercial/office building</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Existing Parking Spaces</td>
<td>126 multi-level parking spots</td>
</tr>
<tr>
<td></td>
<td>• Basement parking with two distinct floors</td>
</tr>
<tr>
<td></td>
<td>• 66 parking stalls that are private Monday-Friday and available to the public Saturday-Sunday</td>
</tr>
<tr>
<td></td>
<td>• The rest of the parking spaces are available to building staff, visitors, and the public daily</td>
</tr>
<tr>
<td>Goal</td>
<td>Meet current EV charging needs plus some futureproofing</td>
</tr>
<tr>
<td>Existing EVSE</td>
<td>(5) Level 2 chargers (2 EVSE in ADA compliant spaces)</td>
</tr>
<tr>
<td>EVSE Installed</td>
<td>(10) Level 2 chargers</td>
</tr>
<tr>
<td>Make & Model</td>
<td>SemaConnect by Blink Charging Series 6 Smart EV Charging Station</td>
</tr>
<tr>
<td>Features</td>
<td>• “Smart” (network connected)</td>
</tr>
<tr>
<td></td>
<td>• Pedestal-mounted</td>
</tr>
<tr>
<td></td>
<td>• Electrical output: 30A, 7.2KW at 240V</td>
</tr>
<tr>
<td></td>
<td>• OCPP compliant</td>
</tr>
<tr>
<td></td>
<td>• SAE J1772 (“J-plug”) connector</td>
</tr>
<tr>
<td></td>
<td>• 18’ cables</td>
</tr>
<tr>
<td></td>
<td>• RFID fob, tap-to-pay, and smartphone app payment options</td>
</tr>
<tr>
<td></td>
<td>• Outdoor rating NEMA 3R</td>
</tr>
<tr>
<td>New Electric Vehicle Infrastructure (EVI) Installed</td>
<td>None (used existing panel)</td>
</tr>
<tr>
<td>EV Capable (future-proofed spaces with panel capacity, conduit, and wiring)</td>
<td>(2) Level 2</td>
</tr>
<tr>
<td>ADA Compliant</td>
<td>No additional ADA compliant spaces</td>
</tr>
<tr>
<td>EVSE Load Management</td>
<td>Automatic Load Management System (ALMS)</td>
</tr>
</tbody>
</table>

Questions?

Contact: **San Francisco Public Utilities Commission** at (415) 554-0773 or email powerprograms@sfwater.org

For more information about SFPUC’s **EV Charge SF program**, please visit our program [webpage](#).

Prepared By: CLEAResult for SFPUC’s EV Charge SF program.