Table of Contents

Report Overview & Organization .. 4

Section 1. Program Highlights and Updates .. 5

1.1 **Program Purpose** ... 5

1.2 **Quarterly Highlight** ... 6
1.2.1 San Antonio Reservoir: Leveraging Existing Infrastructure *(NEW)* ... 6

1.3 **Ongoing Program Activity Updates** ... 8
1.3.1 Status of Ongoing Coordination with San Jose and Santa Clara *(UPDATED)* 8

Section 2. Status of Projects .. 10

2.1 **Regional Projects** *(ALL CURRENT AND UPCOMING ACTIVITIES UPDATED)* 12
2.1.1 Daly City Recycled Water Expansion ... 12
2.1.2 ACWD-USD Purified Water ... 13
2.1.3 Crystal Springs Purified Water (PREP) .. 14
2.1.4 Los Vaqueros Reservoir Expansion .. 15
2.1.5 Bay Area Brackish Water Desalination .. 21
2.1.6 Calaveras Reservoir Expansion ... 22

2.2 **Upcountry Projects** .. 23
2.2.1 Groundwater Banking .. 23
2.2.2 Inter-Basin Collaborations ... 23
2.2.3 Dry Year Transfers .. 23

2.3 **Local Projects** *(ALL CURRENT AND UPCOMING ACTIVITIES UPDATED)* 24
2.3.1 San Francisco Purified Water .. 24
2.3.2 Satellite Recycled Water ... 26
2.3.3 Innovations Program ... 26

2.4 **Project Summaries** .. 27

Section 3. Program Fundamentals ... 43

3.1 **Introduction** .. 43

3.2 **Purpose of the Program** .. 43

3.3 **Planning Needs, Priorities and Service Objectives** ... 45
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>Planning Objectives</td>
<td>46</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Planning Approach: Plan for Obligations, Build for Demands</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>Making San Jose and Santa Clara Permanent Customers</td>
<td>49</td>
</tr>
<tr>
<td>3.5</td>
<td>New Alternative Water Supplies</td>
<td>50</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Water Supply Programs not included in the AWS Program</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Planning for Implementation</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>Trends and Risks</td>
<td>52</td>
</tr>
<tr>
<td>3.8</td>
<td>Timeframe</td>
<td>53</td>
</tr>
<tr>
<td>3.9</td>
<td>Staffing</td>
<td>55</td>
</tr>
<tr>
<td>3.10</td>
<td>Water Supply Task Force</td>
<td>55</td>
</tr>
<tr>
<td>3.11</td>
<td>Regional Project Funding</td>
<td>55</td>
</tr>
<tr>
<td>3.12</td>
<td>Professional Services Contracts</td>
<td>55</td>
</tr>
<tr>
<td>3.13</td>
<td>Adapting to an Uncertain Future</td>
<td>56</td>
</tr>
</tbody>
</table>
Report Overview & Organization

The Quarterly Report for the Alternative Water Supply (AWS) Program provides an update to the SFPUC Commission, stakeholders, and the public on the status of regional and local water supply, storage and conveyance projects that are being planned to meet anticipated needs in the SFPUC’s service area. The Quarterly Report provides updates every three months on program activities, but also contains discussion around relevant planning considerations, as well as background information so it can serve as a standalone document for the first-time reader.

This report provides updates on program and project-related activities that occurred between March and May 2022. The Quarterly Report is divided into three sections: Section 1. Program Highlights and Updates; Section 2. Status of Projects; and Section 3. Program Fundamentals.

Section 1. Program Highlights and Updates. This section provides a discussion of program-level planning activities and considerations. Within this section, there is a discussion around different Quarterly Highlights each quarter. The highlights provide detail on one or two key themes and information on how they relate to the program, in order to provide context for future decision-making. Also included in this section is an update on Ongoing Program Activities.

For this report’s Quarterly Highlight, there is a discussion of the role of the SFPUC’s existing facilities, particularly San Antonio Reservoir, in planning future AWS projects for drought year supply.

Section 2. Status of Projects. This section provides a summary of activities associated with each of the projects being evaluated as part of the AWS planning efforts. The project status updates are broken out to include three to five sections based on their relevance: Project Background, which provides a brief summary of the key elements and objectives of each project; Current Planning Considerations, which are included for context regarding the near-term activities for a project; and sections on Activities This Quarter and Upcoming Activities that are updated each quarter. To provide a sense of the institutional complexity of the project, a schematic on Project Partners & Interests is included at the outset of each project section where the SFPUC is working with external partners.

Section 3. Program Fundamentals. This reference section provides background information on AWS planning activities. It includes information on the rationale, priorities, structure, challenges, opportunities, schedule, and resources related to the program. For the first-time reader, this section provides a complete preface to the AWS Program and may be a useful starting point in reading this Quarterly Report.
Section 1. Program Highlights and Updates

1.1 Program Purpose

The purpose of the Alternative Water Supply (AWS) Program is to evaluate new projects that will help meet future water supply needs in the San Francisco Public Utilities Commission (SFPUC) service area. The AWS Program looks beyond existing infrastructure and surface water supplies of the Regional Water System (RWS) and local groundwater sources, to new and diverse or “alternative” water supply options such as groundwater banking, surface water storage expansion with a potential for diverse water supply sources, water transfers, purified water¹ (potable reuse), desalination as well as technological innovations and other tools that can increase supply or reduce demand.

Planning for alternative water supplies requires a comprehensive and detailed evaluation effort that considers several interrelated challenges, many of which are different than those faced for traditional water supply planning at the SFPUC. These planning challenges include new and potential regulations, multi-party partnerships, and approaches for integrating supplies into the existing water system. Additionally, as with any long-term water supply planning effort, the SFPUC must also contend with future uncertainties such as instream flow needs, climate change, and future curtailments during droughts. These planning challenges and uncertainties highlight the importance of being thoughtful and adaptive in planning for the AWS Program.

The central planning objective of the AWS Program is to meet anticipated water supply needs in drought years in the SFPUC’s retail and wholesale service areas through the 2045 planning horizon. The water supply needs account for 1) the potential instream flow requirements that would affect available water supplies; 2) the SFPUC’s contractual obligations to retail and wholesale customers, and an additional 9 million gallons per day (mgd) for the two interruptible customers² (Cities of San Jose and Santa Clara). Based on the difference between the SFPUC’s anticipated total obligations and expected supply availability in the RWS, the additional water supply need would be 122 mgd by 2045. However, demands over the planning horizon are projected to be lower than the obligations.³ Comparing demand projections to water supply availability in 2045, the water supply need would be 84 mgd (Figure 1) in drought years.

¹ Purified water is the treated effluent from a wastewater treatment plant that has undergone advanced treatment, including filtration, reverse osmosis, disinfection and advanced oxidation.
² The SFPUC is contractually obligated to making a decision about whether to make San Jose and Santa Clara permanent customers by December 31, 2028.
³ Demands for supply from the RWS account for savings from conservation and offsets from non-RWS water supplies and onsite water recycling.
1.2 Quarterly Highlight

1.2.1 San Antonio Reservoir: Leveraging Existing Infrastructure (NEW)

San Antonio Reservoir is a water storage facility owned and operated by the SFPUC as part of the RWS. San Antonio Reservoir is one of two RWS reservoirs in Alameda County and the third largest of the RWS reservoirs in the San Francisco Bay Area. The reservoir was formed by the James H. Turner Dam, which was completed in 1965 and is featured on the cover page of this quarterly report.

San Antonio Reservoir has a surface area of 1.3 square miles and a storage capacity of 50,300 acre-feet (approximately 16 billion gallons), which is approximately half the size of nearby Calaveras Reservoir. The reservoir receives water from the San Antonio Creek watershed. In addition to storing local runoff, San Antonio Reservoir is used to store surplus water from Calaveras Reservoir and water from the Hetch Hetchy Aqueduct. The water from the reservoir is conveyed through San Antonio Pipeline to the Sunol Valley Water Treatment Plant, where it is filtered and disinfected before delivery to SFPUC customers.

Figure 2 shows the location of San Antonio Reservoir north of the Hetch Hetchy Aqueduct.
1.2.1.A Repurposing Existing Infrastructure

During most years, existing SFPUC water supplies are sufficient to provide full deliveries to customers. In wet years, with runoff from the local watersheds, San Antonio Reservoir needs less refill from the Hetch Hetchy Aqueduct. In dry years, water from the Hetch Hetchy Aqueduct is the primary source of refill for the stored water in the reservoir. With higher risk of water supply shortage during severe droughts, the SFPUC faces a corresponding risk to delivering water service reliably to its customers. At such times, prudent use of existing infrastructure has allowed the SFPUC to manage its deliveries.

During the extended drought between 1987 and 1992, storage in the SFPUC’s reservoirs was drastically depleted. To maintain supply reliability, the SFPUC made supplemental water purchases from agencies that had surplus supplies and were willing to sell water at that time. The supplemental supplies were delivered through the Department of Water Resources’ South Bay Aqueduct. The proximity of San Antonio Reservoir with the South Bay Aqueduct and the Sunol Valley Water Treatment Plant (Figure 2) made it ideal for the SFPUC to receive the purchased water through the connections made between the South Bay Aqueduct and the RWS to manage water deliveries.

*The gray area shows watershed land owned by the City and County of San Francisco.
1.2.1.B Adaptive Use of Existing Facilities

The experience of the 1987-1992 drought demonstrates how the SFPUC has previously leveraged San Antonio Reservoir to receive and manage water supplies from other agencies during a critical drought period. The physical connections that were made between the South Bay Aqueduct and San Antonio Reservoir at the time can offer a tremendous benefit of adaptively using existing resources toward water resilience in the event of future water supply shortages.

The approach toward planning for alternative water supplies involves reimagining and prioritizing the SFPUC’s existing infrastructure assets besides building new facilities. As part of the AWS Program, San Antonio Reservoir represents one such facility that is being assessed for its potential for managing new supplies.

The Los Vaqueros Reservoir Expansion (LVE) Project, a multi-party storage expansion project detailed in Section 2 of this report, will provide new storage outside of the RWS for use during future droughts. This increases the overall storage capacity for the SFPUC in years when RWS supplies are available. However, taking delivery of stored water from the expanded Los Vaqueros Reservoir into the RWS has limitations. First, the South Bay Aqueduct is a facility of the State Water Project and its priority use is for deliveries to Zone 7 Water Agency, Alameda County Water District, and Valley Water. During droughts, capacity for deliveries to the SFPUC may be limited and the timing may not match the SFPUC’s delivery needs. Second, supplies delivered through the South Bay Aqueduct have different water quality characteristics than existing RWS supplies. Storing supplies from the LVE in San Antonio Reservoir can provide operational flexibility to optimize deliveries to customers as well as a way to manage water quality changes in the RWS. By considering it as a potential resource in conjunction with a new water supply and storage project, the AWS Program aims to optimize the use of existing assets and maintain operational flexibility in its planning for future needs and vulnerabilities.

1.3 Ongoing Program Activity Updates

1.3.1 Status of Ongoing Coordination with San Jose and Santa Clara (UPDATED)

Planning Considerations for San Jose and Santa Clara’s Permanent Status

Planning of alternative water supplies is proceeding with the intention to be able to make the Cities of San Jose and Santa Clara permanent customers of the SFPUC. Based on the request from San Jose and Santa Clara, that means providing at least 9 mgd of additional water supply guarantees to the two cities collectively. However, consistent with the SFPUC’s planning

4 The SFPUC is considering the South Bay Aqueduct as a potential conveyance alternative under the LVE Project to connect with the RWS.
priorities, the SFPUC must first meet instream flow requirements and meet ongoing obligations to existing permanent customers before making interruptible customers permanent or considering meeting increased demands of existing and interruptible customers. Distinct from San Jose and Santa Clara’s all-year needs, meeting existing obligations requires securing dry year supplies.

As SFPUC staff evaluate the technical and institutional feasibility of each of the projects included in the AWS Program, the timing, availability, and location of the water supply benefits associated with the projects are being considered. With these criteria, the SFPUC can review projects for their suitability as drought supply for existing permanent customers and also their suitability for meeting the needs of San Jose and Santa Clara. Depending on location and availability, a purified water project could be better suited to meeting San Jose and Santa Clara’s needs rather than the drought needs of existing permanent customers alone.

Since August 2020, the Bay Area Water Supply & Conservation Agency (BAWSCA) has facilitated regular discussions with San Jose and Santa Clara to collectively consider project opportunities and interests. In addition to reviewing projects that are already listed in the AWS Program, the agencies are working together to identify new project opportunities that may provide multiple water supply benefits as well.

Activities in this Quarter

This quarter, the SFPUC staff, along with staff from the Cities of San Jose and Santa Clara began developing a scope of work to develop a purified water concept and alternatives to determine preliminary technical feasibility. A task order through the SFPUC’s Water Resources As-Needed contract will be initiated early in the next quarter and work is expected to be completed by the first quarter of 2023. If feasible, a purified water project in the South Bay could be a dedicated supply source to consider permanent customer status for San Jose and Santa Clara. Starting next quarter (September 2022), the updates on this effort will be reported as a separate project in Section 2.1.
Section 2. Status of Projects

Staff are currently studying the feasibility of regional projects (outside of SFPUC’s retail service area) and local projects (within SFPUC’s retail service area) that can contribute to meeting the needs and priorities identified for this planning effort. Three projects in the San Joaquin Valley (upcountry projects) have also been identified. Collectively, these regional, local, and upcountry projects represent new water supplies, local supply opportunities, a study of conveyance options, an innovations program, a potential local policy option, and a water transfer simulation that can help answer some planning questions. This section provides a status of each of these efforts, which are organized geographically and shown in Figure 3.

Each project status discussion that follows in Sections 2.1, 2.2, and 2.3 includes the following subsections: Project Background and Current Planning Considerations, which is included for purposes and context, and Activities This Quarter and Upcoming Activities that are updated each quarter. A schematic on Project Partners & Interests appears at the beginning of each of the regional projects in Section 2.1 in which there are multiple partners.
Figure 3. Map of Regional AWS Program Activities
2.1 Regional Projects
(ALL CURRENT AND UPCOMING ACTIVITIES UPDATED)

2.1.1 Daly City Recycled Water Expansion

Project Partners & Interests

<table>
<thead>
<tr>
<th>SFPUC</th>
<th>Daly City (Sanitation District)</th>
<th>Cal Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase drought supply reliability</td>
<td>Reduce ocean discharges</td>
<td>Develop local supplies</td>
</tr>
</tbody>
</table>

Project Background

This project supports the SFPUC’s Groundwater Storage and Recovery Project (currently under construction) by making an additional 0.7 mgd of groundwater available in the South Westside Basin for drought supply. The project is envisioned to serve 7 cemeteries and other smaller irrigation customers with new recycled water supply, replacing existing groundwater pumping from the Basin. This will free up groundwater, enhancing the reliability of the Basin. The project has been a regional partnership between the SFPUC, Daly City, and the California Water Service Company (Cal Water), in coordination with the Town of Colma and the irrigation customers who are located largely within Cal Water’s service area. As a private water utility, Cal Water’s participation in the project is subject to approval by the California Public Utilities Commission. SFPUC customers will benefit from the increased reliability of the South Westside Basin for additional drinking water supply during droughts.

Current Planning Considerations

The current planning questions driving near-term project activities include:

1) How much recycled water will the irrigation customers need based on future demands?

2) How will the responsibilities and costs be allocated among the project partners?

Activities this Quarter

This quarter, the consultant team completed the update to the cemetery demands on their existing expansion plans, which concludes that there would be sufficient recycled water supply to meet future demands. The consultant team also completed an updated cost estimate of existing irrigation costs at the cemeteries. SFPUC staff focused on outreach this quarter toward understanding the interest of the cemeteries in using recycled water, which is critical in moving the project forward.
Upcoming Activities

In the coming quarter, the SFPUC will continue to engage with the cemeteries and work with the partners to develop more details about the cost share and other terms of a preliminary agreement to move the project into design.

2.1.2 ACWD-USD Purified Water

Project Partners & Interests

<table>
<thead>
<tr>
<th>SFPUC</th>
<th>Alameda County Water District (ACWD)</th>
<th>Union Sanitary District (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase Dry Year Supply</td>
<td>Reduce dependence on SFPUC Regional Water System</td>
<td>Reduce Bay discharges</td>
</tr>
</tbody>
</table>

Project Background

This project could provide a new purified water supply utilizing Union Sanitary District’s treated wastewater. Purified water produced by advanced water treatment at Union Sanitary District could be transmitted to the Quarry Lakes Groundwater Recharge Area to supplement recharge into the Niles Cone Groundwater Basin or put to other uses in Alameda County Water District (ACWD)’s service area. With the additional water supply to ACWD, an in-lieu exchange with the SFPUC could result in more water left in the Regional Water System. Additional water supply could also be directly transmitted to the SFPUC through a new intertie between ACWD and the SFPUC’s Bay Division Pipelines.

Current Planning Considerations

The current planning questions driving near-term project activities include:

1) What is the maximum potential purified water that can be produced and put to beneficial use from this project?

2) What are the considerations and tradeoffs, such as costs and infrastructure needs, of the two selected alternatives that the partners wish to study?

Activities this Quarter

During this quarter, the project team continued to perform technical analyses on two alternatives for the feasibility study which include purified water concepts that could recharge the groundwater basin through Quarry Lakes as a first phase and provide water supply to ACWD or the SFPUC directly as a second phase. There are two variations of this phased concept based on whether or not planned capital improvements at the wastewater treatment facility are assumed. The partner agencies completed review of the draft chapters on treatment, conveyance, and groundwater.

Upcoming Activities

In the coming quarter, the consultant team will incorporate feedback from the Partner agencies received on the feasibility study and cost estimates.
2.1.3 Crystal Springs Purified Water (PREP)

Project Partners & Interests

<table>
<thead>
<tr>
<th>SFPUC</th>
<th>Silicon Valley Clean Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase Dry Year Supply or Supply for San Jose / Santa Clara</td>
<td>City of San Mateo</td>
</tr>
<tr>
<td>Cal Water</td>
<td>BAWSCA</td>
</tr>
<tr>
<td>Develop local supplies</td>
<td>Redwood City</td>
</tr>
<tr>
<td></td>
<td>Increase dry year supply</td>
</tr>
</tbody>
</table>

Project Background

The Crystal Springs Purified Water (also referred to as the Potable Reuse Exploratory Plan or PREP) Project is a purified water project that could provide 6-12 mgd of water supply through reservoir water augmentation at Crystal Springs Reservoir, which is a facility of the RWS. Treated wastewater from Silicon Valley Clean Water and/or the City of San Mateo would be conveyed to an advanced water treatment plant to produce purified water that meets state and federal drinking water quality standards. The purified water would then be delivered via pipeline 10-20 miles (depending on the alignment) to Crystal Springs Reservoir, blended with regional surface water supplies and treated again at Harry Tracy Water Treatment Plant. Early studies analyzed the feasibility of treatment and distribution and provided feasible scenarios for institutional structure and costs.

Current Planning Considerations (UPDATED)

To evaluate the merits of the project to produce water supply to meet dry year needs, the SFPUC will need to answer the following near-term planning questions:

1) Will the project be eligible for state and federal funding support?

2) How will partners share in the cost and long-term benefits of the project?

3) How will a new water supply in Crystal Springs Reservoir affect water quality, operational needs, and distribution of RWS supplies?

Activities This Quarter

This quarter, the SFPUC and the partner agencies focused on finalizing the Memorandum of Agreement (MOA) for the Basis of Design document for a phased hybrid project. The first phase would include conveying 6 to 8 mgd of purified water (Indirect Potable Reuse or IPR) to Crystal Springs Reservoir followed by a second phase of 4 to 6 mgd of direct potable reuse (DPR) phase that would serve customers on the Peninsula. The partners reached an agreement on how much each agency would contribute to the total cost of the Basis of Design report. A draft MOA
has been circulated. The MOA will be finalized for Commission approval following the review by the partner agencies.

Upcoming Activities

Next steps for the project team include approving the MOA and starting to prepare the Basis of Design report. In addition, the consultants will continue to work on converting the Phase 3 feasibility study into a document that is compliant with Title XVI feasibility and State Revolving Fund funding requirements.

2.1.4 Los Vaqueros Reservoir Expansion

Project Partners & Interests

<table>
<thead>
<tr>
<th>CCWD</th>
<th>EBMUD</th>
<th>ACWD Zone 7 Water Agency</th>
<th>Valley Water</th>
<th>SFPUC with BAYCORA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Increase water supply reliability</td>
<td>Increase water supply reliability</td>
<td>Increase Dry Year Supply or Supply for San Jose / Santa Clara</td>
</tr>
<tr>
<td>San Luis & Delta Mendota Water Authority</td>
<td>Grassland Water District</td>
<td>DWR (State)</td>
<td>USBR (Federal)</td>
<td>Provide approvals and funding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase water supply for irrigation</td>
<td>Protect wildlife refuges</td>
<td></td>
</tr>
</tbody>
</table>

Project Background

The LVE Project is a storage project that will enlarge the existing reservoir located in northeastern Contra Costa County from 160,000 acre-feet to 275,000 acre-feet. While the existing reservoir is owned and operated by Contra Costa Water District (CCWD), the expansion will have regional benefits and will be managed by a Joint Powers Authority (JPA). The JPA was formed and filed with the State in October 2021 and the JPA monthly meetings began on November 10, 2021. The JPA will provide governance and administration for the project and the JPA members will assist in the design, construction, operation, and administration of the project.

CCWD is the lead agency on the planning, design and permitting efforts, with funds provided by the State and federal government, and contributions from Local Area Partners (LAPs) through Multi-Party Cost Share Agreement amendments.

The additional storage capacity from the LVE Project would provide a dry year water supply benefit to the SFPUC. However, securing water supply and ensuring that conveyance is available can both be significant barriers to realizing the full water supply potential of storage for SFPUC customers. In particular, issues related to conveyance have been the focus for the SFPUC staff in determining the extent of participation in the LVE Project.
Specifically, to better understand the conveyance options and the effects related to decision-making for the LVE Project, two subprojects were developed. The subprojects are listed below and described in Sections 2.1.4A and 2.1.4B:

1. **Conveyance Alternatives** (evaluating conveyance from LVE to RWS facilities);

2. **The Bay Area Regional Reliability (BARR) Partnership Shared Water Access Program (SWAP)** is a simulation to evaluate the potential impacts of conveyance from LVE to San Antonio Reservoir within the RWS, as well as an exchange with ACWD.

In addition, water supply options are being considered for storage in LVE. One of these options is using CCWD’s existing diversions in the San Francisco Bay Delta Estuary (Delta) treated through the **Brackish Water Desalination Project**, which could be a source of supply as an exchange with CCWD. This project is described in Section 2.1.5 below.

Current Planning Considerations
The current planning questions driving near-term project activities include:

1) What are the water supply options available to fill storage in Los Vaqueros Reservoir for the SFPUC? What are the opportunities and constraints associated with water supply?

2) What are the costs and constraints of taking water deliveries through the South Bay Aqueduct?

3) What are the operational constraints of LVE facilities to a) fill storage and b) take deliveries in dry years?

4) Are exchanges with partner agencies a feasible alternative to direct deliveries to the SFPUC? If so, under what conditions?

Activities This Quarter
Developments in planning, permitting, design, and funding during this quarter as described below.

Planning, Permitting, and Design

Draft water rights change petitions have been submitted to the State Water Resources Control Board for preliminary review. Coordination continues on several permit applications that were previously submitted to the U.S. Fish and Wildlife Service and the California Department of Fish and Wildlife, and other regulatory agencies.

Los Vaqueros Dam design is complete. CCWD is looking to procure services to inspect and assess the conditions of the inlet/outlet pipeline to the LVE dam by the Fall of 2022 when demand on
the pipeline decreases. This pipeline is expected to be operated under higher pressure associated
with the dam expansion.

Evaluation of alternative alignments for the Transfer-Bethany Pipeline through sensitive areas
continues in coordination with key local stakeholders. The 30% design of the Transfer-Bethany
Pipeline Turn-in to the California Aqueduct is under review by DWR.

Pumping Plant No. 1 replacement 30% design is complete and submitted for review. Evaluation
of vegetation management options is currently underway.

SFPUC staff continue to participate in the monthly Los Vaqueros Design Review team (DRT)
meetings alongside other JPA Members. The DRT provides technical overview for all components
of the LVE Project. In this quarter, the DRT reviewed the Pumping Plant No.1 preliminary design,
the dam expansion 90% design construction cost estimate, conceptual design of the Transfer-
Bethany Pipeline, among others.

State and Federal Funding

Federal funding for the project is expected to provide 25% of the total project cost at
approximately $160 million, of which $14 million was appropriated in fiscal year 2021 and $50
million in fiscal year 2022. Future federal funding requests will include the remainder of the
maximum federal share, some portion of which may be available in the Bipartisan Infrastructure
Law that was signed on November 15, 2021. An additional $7 million for the project planning cost
share was secured from the U.S. Bureau of Reclamation in this quarter.

The LVE project qualified for funding under the Water Storage Investment Program and received
an adjusted Maximum Conditional Eligibility Determination of $477,558,343 from the California
Water Commission on March 16, 2022. This amount reflects an inflation adjustment of 1.5% and
an increase in over $7 million from the previous award.

Local Area Partners

Funds from Amendment No. 3 to the Multiparty Cost Share Agreement continue to support the
project activities. CCWD, in collaboration with the LAPs, is preparing Multiparty Agreement
Amendment No.4, an Interim Funding Agreement, and a preliminary 1-year JPA budget. The
LAPs and CCWD have advanced the discussion on potential use of Water Infrastructure Finance
and Innovation Act (WIFIA) financing. Created by Congress in 2014, WIFIA has established a
new federal loan and guarantee program administered by the U.S. Environmental Protection
Agency (EPA) to help meet the growing water infrastructure needs in communities across the
county. The WIFIA program provides low-cost financing and could offer financial benefits that
reduce the overall cost of financing including the ability to draw down funds as needed
throughout construction and defer principal payments until substantial completion of the
project. However, the said financial benefits need to be weighed against the requirements and
regulations such as the use of American Iron and Steel, that are imposed on projects receiving
WIFIA credit assistance. At this early stage, the SFPUC is in support of exploring a WIFIA loan as an alternative to JPA-backed bonds or self-finance by the LAPs. If the use of a WIFIA loan for the project is approved by the JPA Board, a Letter of Interest will be submitted to the EPA in the next quarter.

Another financial task undertaken during this quarter is the development of a methodology for an allocation of costs and grant funding among the LAPs. CCWD and LAP staff are aiming to develop a method that attempts to meet the following objectives:

- Follow the beneficiary-pays-principle;
- Meet state and federal requirements associated with public funding;
- Serve as the basis of the service agreements; and
- Serve as the basis for future contract negotiations with state and federal funding entities.

Through participation in the LVE Finance Work group and CCWD-led financial workshops, SFPUC staff continue to provide comments and feedback on the development of this methodology.

Los Vaqueros Reservoir Expansion Joint Powers Authority (JPA)

The Los Vaqueros Reservoir JPA Board of Directors continues to meet monthly. The JPA Board directed staff to proceed with the recruitment process for an Executive Director in March 2022. An Ad Hoc Committee was formed to make the initial selection of candidates and will conduct the first round of interviews. The Executive Director will be responsible and accountable for technical, administrative, and policy level tasks to advance the LVE project. The JPA’s Joint Exercise of Powers Agreement requires the Board to adopt a budget prior to the start of the fiscal year on July 1. The Board has voiced their preference for an initial single-year budget for fiscal year 2023 and transitioning to a two-year budget moving forward. A draft Budget will be brought to the Board for discussion in May and the final version for approval in June. The agenda and supporting information for the JPA Board Meetings are available on the JPA website: http://www.losvaquerosjpa.com.

Upcoming Activities

Activities expected to take place in the next quarter are as follows:

- Initiate geotechnical investigations and 60% design for the Transfer-Bethany Pipeline.
- Continue the identification and preliminary characterization of water supply options.
- Prepare WIFIA letter of Interest to the EPA and determination of eligibility.
- Initiate WIFIA cost-benefit analysis with the assistance of the LVE financial consultant, in collaboration with CCWD’s engineering team and the LVE Financial Work Group.
- Develop Multiparty Agreement Amendment No.4 and Interim Funding Agreement.
- Update cost and grant funding allocation among the LAPs.
2.1.4.A Conveyance Alternatives

Project Background
The SFPUC is considering the Los Vaqueros Reservoir as a dry year supply. Two main pathways involve moving water from storage in a prospective LVE Project to the SFPUC’s service area, either directly to RWS facilities or indirectly via an exchange with partner agencies. The first and preferred path is through the South Bay Aqueduct (SBA), and the second pathway is through East Bay Municipal Utility District (EBMUD).

The SBA is a 49-mile aqueduct, which is part of the State Water Project, owned by the Department of Water Resources (DWR). Three State Water Project contractors (SBA Contractors) maintain contract capacity for use of the SBA: Zone 7 Water Agency, ACWD, and Valley Water. The SBA is in close geographical proximity to SFPUC’s San Antonio Reservoir and the Sunol Valley Water Treatment Plant. SFPUC staff, in coordination with BAWSCA, have been working with the SBA Contractors to develop a clear understanding of what the maximum potential use of the SBA could be that would be of benefit to the SFPUC and what constraints may exist to achieving those benefits.

Current Planning Considerations
As indicated under the LVE Project, identifying a viable conveyance pathway is critical for the SFPUC’s participation. The primary focus of this task has been to understand the capacity within the SBA and evaluate an alternative through EBMUD.

Activities this Quarter
The SFPUC and DWR initiated discussion on technical and financial terms and conditions of a conveyance agreement for the Los Vaqueros supplies.

In March, staff from SFPUC, DWR, and CCWD participated in a joint assessment to visually assess the SBA turnout infrastructure that connects the SBA to San Antonio Reservoir and was last utilized during the drought in the 1990s. The turnout was found to consist of a 30-inch diameter valve and pipe, a meter, and an energy dissipater all contained in separate concrete vaults. There is no power at the site, and no data communication to/from the site. The turnout discharges the water from the SBA into a streambed that drains into San Antonio Reservoir.

In addition to direct deliveries to the SFPUC facilities, SFPUC staff are also pursuing exchanges with SBA Contractors. DWR has informed the SFPUC that conveying non-project water as a non-State Water Project Contractor, the SFPUC would be subject to associated wheeling or conveyance charges, including charges for power, and would have a delivery priority lower than for State Water Project Contractors as specified in Article 12(f) of the State Water Project Water Supply Contracts, which specifies the delivery priorities for a State Water Project Contractor.

In May, staff from the three SBA Contractors along with CCWD, DWR and the SFPUC met to discuss four alternatives outlined by DWR for SFPUC’s use of the SBA and to explore various
priorities assigned to SFPUC’s supply under each alternative. Three of the alternatives involve exchanges with the SBA Contractors and one involves wheeling through an agreement with DWR under Water Code 1810. DWR as the owner would have discretion in deciding when unused capacity is available.

ACWD is a State Water Project SBA Contractor as well as SFPUC’s Wholesale Customer. Also, the SFPUC and the Santa Clara Valley Water District (Valley Water), another State Water Project SBA Contractor have common customers including Cities of San Jose and Santa Clara. Discussions have been ongoing through this quarter with both agencies regarding potential exchanges. The potential for an exchange with ACWD is being evaluated through the BARR SWAP project described below.

Upcoming Activities
In the coming quarter, staff will continue to engage with DWR to outline the terms of a conveyance agreement and understand the constraints and condition of physical capacity at the existing SBA turnout.

2.1.4.B Bay Area Regional Reliability Shared Water Access Program (BARR SWAP)

Project Background
As part of the BARR Partnership, a consortium of 8 Bay Area water utilities (including ACWD, BAWSCA, CCWD, EBMUD, Marin Municipal Water District (MMWD), SFPUC, Valley Water, and Zone 7 Water Agency) is exploring opportunities to move water across the region as efficiently as possible, particularly during times of drought and emergencies.

The BARR agencies initially proposed two separate pilot projects through the Shared Water Access Program (SWAP) to test conveyance pathways and identify potential hurdles to better prepare for sharing water during a future drought or emergency. A strategy report identifying opportunities and considerations will accompany these pilot transfers will be completed in 2022. This work is supported with grant funds from the U.S. Bureau of Reclamation and the participating water agencies.

The first proposed pilot (Pilot 1A) is a desktop simulation that assumes the existence of some facilities that are currently not in place. The second pilot (Pilot 2A) was a physical exchange of water between two federal Central Valley Project Contractors, CCWD and Valley Water. Due to drought conditions, a third pilot testing Central Valley Project transfers between CCWD and EBMUD was added to the BARR SWAP effort.

Current Planning Considerations
This simulation will test the conveyance of water from an expanded Los Vaqueros Reservoir through the SBA. The agencies participating in this simulation are the SFPUC, ACWD, and BAWSCA. This BARR SWAP project will help the SFPUC evaluate two aspects of LVE Project feasibility:
1) Potential water quality impacts and treatment needs associated with a new water supply through the SBA into San Antonio Reservoir and Sunol Valley Water Treatment Plant; and

2) Potential for exchange with ACWD, offsetting demand on the RWS.

Activities this Quarter
In this quarter, for Pilot 1A, a final report was prepared which includes the technical memoranda on the impacts of bringing in a new source of supply from the LVE Project through the SBA and blending that supply with the RWS either in San Antonio Reservoir or directly at the Sunol Valley Water Treatment Plant. This will feed into the BARR SWAP analysis.

A Draft BARR SWAP strategy report is being prepared by the partners and the consultant team.

Upcoming Activities
In the next quarter, the final BARR SWAP report will be submitted to U.S. Bureau of Reclamation for review.

2.1.5 Bay Area Brackish Water Desalination

Project Background
The Bay Area Brackish Water Desalination (Regional Desalination) Project is a partnership between CCWD, EBMUD, SFPUC, Valley Water, and Zone 7 Water Agency. The project could provide a new drinking water supply to the region by treating brackish water from CCWD's existing Mallard Slough intake in Contra Costa County. While this project has independent utility as a water supply project, for the current planning effort the SFPUC is considering it as a source of supply for storage in LVE. While the allocations remain to be determined among partners, the SFPUC is considering a water supply benefit of between 5 and 15 mgd during dry year conditions when combined with storage at LVE.

Current Planning Considerations
The SFPUC is considering desalinated brackish water as a source for storage in LVE. For that scenario, the current planning questions include:

1) What are the conditions needed to make an exchange of water to fill SFPUC storage in LVE in wet years possible?

2) What are the losses associated with an exchange and related conveyance?

3) What are the alternatives to desalination for water supply storage in LVE?
Activities this Quarter
The SFPUC has initiated a Water Supply Analysis evaluating this project along with other water supply alternatives that can be stored in an expanded Los Vaqueros Reservoir. An initial screening of technically feasible alternatives was carried out during this reporting period.

Upcoming Activities
Additional analysis of feasible alternatives will be initiated in the next quarter.

2.1.6 Calaveras Reservoir Expansion

Project Background
This storage project envisions the expansion of Calaveras Reservoir to store excess RWS supplies or other source water in wet/normal years. No expansion of water rights from the local watershed is anticipated. With the Calaveras Dam Replacement project in place, Calaveras Dam impounds a capacity of 96,850 acre-feet or 31 billion gallons of water. Through an expansion, up to an additional 289,000 acre-feet or 94 billion gallons of additional storage could be realized. Calaveras Reservoir is owned and operated by the SFPUC for the benefit of RWS customers. Unlike all other regional projects under review in this program, no external partners are anticipated at this time.

Current Planning Considerations
The current planning questions include:

1) What are the conveyance alternatives, including infrastructure and operational considerations, for an expanded Calaveras Reservoir?

2) How can different water supply alternatives be integrated to maximize efficient use of expanded storage at Calaveras?

Activities this Quarter
During this quarter, the project team completed the development of the conveyance alternatives and continued the evaluation of the alternatives. The Draft Opinion of Probable Construction Costs were also developed.

Upcoming Activities
In the next quarter, a draft report will be prepared to summarize the conveyance evaluation and a workshop will be set up to present the findings to the stakeholders.
2.2 Upcountry Projects

2.2.1 Groundwater Banking

Project Background
Groundwater banking in the Modesto Irrigation District and Turlock Irrigation District service areas could be used to provide some additional water supply to meet instream releases in dry years reducing water supply impacts to the SFPUC service area. For example, additional surface water could be provided to irrigators in wet years, which would offset the use of groundwater, thereby allowing the groundwater to remain in the basin rather than be consumptively used. The groundwater that remains in the basin can then be used in a subsequent dry year for irrigation, freeing up surface water that would have otherwise been delivered to irrigators to meet instream flow requirements.

Activities this Quarter
There is no change in status for this project over the reporting period.

Upcoming Activities
Feasibility study of this option is included in the proposed Tuolumne River Voluntary Agreement. Progress on this potential water supply option will depend on the negotiations of the Voluntary Agreement.

2.2.2 Inter-Basin Collaborations

Project Background
Inter-Basin Collaborations could provide net water supply benefits in dry years by sharing responsibility for instream flows in the San Joaquin River and the Delta more broadly among several tributary reservoir systems. One mechanism by which this could be accomplished would be to establish a partnership between interests on the Tuolumne River and those on the Stanislaus River, which would allow responsibility for streamflow to be assigned variably based on the annual hydrology.

Activities this Quarter
No new development has occurred during this reporting period.

Upcoming Activities
As is the case with Groundwater Banking, feasibility of this option is included in the proposed Tuolumne River Voluntary Agreement.

2.2.3 Dry Year Transfers

Project Background
During the planning and implementation of the Phased Water System Improvement Program, the SFPUC pursued a long-term agreement to transfer 2 mgd from MID in dry years only. The
negotiations were terminated in 2012. Subsequently, the SFPUC has initiated discussions with Oakdale Irrigation District to secure a similar dry year transfer.

Activities this Quarter
No new water transfer developments occurred during this reporting period.

Upcoming Activities
While no transfer has been secured to date, the SFPUC continues to engage in discussions with partners to explore potential transfer opportunities on the Tuolumne River and throughout the San Joaquin Valley.

2.3 Local Projects
(ALL CURRENT AND UPCOMING ACTIVITIES UPDATED)

This section describes new alternative water supply projects in SFPUC’s retail service area that can offset future retail demands from the RWS. This list supplements the SFPUC’s robust efforts in conservation, water recycling, onsite water reuse, and local and regional groundwater that have been underway for decades. Ongoing efforts are described in Section 3.5.1.

2.3.1 San Francisco Purified Water

Project Background (UPDATED)
The San Francisco Purified Water Project is a concept that envisions providing a new, local drinking water supply in San Francisco. In 2020, the SFPUC successfully completed PureWaterSF, a small-scale research and demonstration potable reuse project at its headquarters. While more research and investigation are needed before a project is developed, there is a statewide push to increase reuse and reduce wastewater discharges. With the absence of large remaining non-potable applications, San Francisco is evaluating the maximum potential for recycling water for drinking or producing purified water that can be blended at one or more of San Francisco's drinking water reservoirs consistent with draft regulations that are being developed by the State Water Resources Control Board.

Activities this Quarter
This quarter, a final report incorporating the findings of three technical memoranda on the potential for purified water in San Francisco was prepared by the project team. Key findings of the report include:

- Groundwater augmentation, reservoir water augmentation and raw water augmentation are not viable in San Francisco due to the lack of infrastructure to support use of purified water based on current and proposed regulations. Treated drinking water augmentation, which involves treating recycled water to regulatory standards currently being developed by the State and expected to be codified in 2023, is the only feasible pathway for developing purified water in San Francisco.
• Maximizing the potential for purified water depends on a) available wastewater flows over time; b) drinking water distribution capacity; c) current and anticipated wastewater discharge permit limitations; and d) available space for treatment. Based on these considerations, the maximum purified water that can be produced in San Francisco would be up to 43.4 mgd (38.3 mgd from the Southeast Treatment Plant and 5.1 mgd from the Oceanside Treatment Plant).

• Maximizing the potential for purified water could result in a replacement of 100% of existing supply with purified water in some parts of San Francisco.

• Alternatives that were evaluated in addition to maximizing the production of purified water include a) developing similar-sized projects on both the east and west sides of the city, based on space set aside at the Southeast Treatment Plant in current planning. This alternative would result in 4.1 mgd of purified water; b) adding equal volumes of purified water to the existing drinking water supply across five drinking water reservoirs. This alternative would result in 11.9 mgd of purified water; and c) accounting for local groundwater and other alternative supplies in the distribution of purified water across five drinking water reservoirs. This alternative would result in 22.7 mgd of purified water in San Francisco.

• All four alternative scenarios evaluated envision two purified water treatment plants – one in the vicinity of Southeast Treatment Plant and a second near Oceanside Treatment Plant.

• Preliminary capital cost estimates for the alternatives range from $215 million for the smallest project to $905 million for the largest. Annual operating and maintenance costs range from $15 million to over $45 million depending on the alternative.

• There are four ways to distribute purified water. The only one applicable in San Francisco is treated drinking water augmentation. Treated drinking water augmentation is not currently regulated in California. The only treated drinking water augmentation project in operation globally is located in Windhoek, Namibia and it has been operating successfully since 1968. Several other large purified water projects are currently being planned throughout California, the United States, and internationally.

• Direct and transparent public engagement from planning through implementation is critical in considering implementation of purified water. Investing in short-, medium- and long-term demonstration of different kinds can ensure that the SFPUC is able to reach the most people and provide different platforms for direct participation in project development.

Upcoming Activities
The completed study will be shared with the Board of Supervisors, the Citizens Advisory Committee and others. Staff will identify next steps and follow up actions.
2.3.2 Satellite Recycled Water

Project Background
The proposed Satellite Recycled Water Project would provide a tertiary recycled water supply to meet the demands of dual-plumbed buildings in San Francisco that do not currently have a non-potable water supply source. This project would provide an appropriate water supply source for non-potable irrigation, as well as commercial and industrial uses not addressed by the Non-Potable Ordinance.

Activities this Quarter
In this quarter, SFPUC’s staff and consultants finalized the technical memo summarizing the results from the satellite treatment facility feasibility study. The final technical memorandum concluded that due to the limited geographic area for which the site can be located, land acquisition that meets the site requirements for a satellite recycled water plant will be highly challenging. The technical memorandum also included another option of serving the identified recycled water demands from a potential treatment facility located at the SFPUC’s Southeast Treatment Plant (SEP) that would generate up to 1.2 mgd of recycled water from the effluent. Water quality objectives and conceptual treatment trains that would meet the water quality objectives were developed for four options: a satellite treatment facility generating recycled water from raw sewage; a treatment facility located at the SEP generating recycled water from the SEP effluent; a treatment facility generating purified water from the SEP effluent, and a hybrid treatment facility that generates both purified and recycled water located at the SEP.

Upcoming Activities
The consultant team will continue to evaluate a potential treatment facility at the SEP that would produce recycled water to serve the total recycled water demand of 1.2 mgd; a potential treatment facility that would produce purified water to serve both recycled water and potable water demands; and a hybrid option of a treatment facility that would produce both recycled and purified water. Starting next quarter (September 2022), this project including the updates on the evaluation of the facility, will no longer be reported as a separate project and will be combined with the San Francisco Purified Water.

2.3.3 Innovations Program

Project Background
This program supports development of new technologies and initiatives to demonstrate the feasibility of atmospheric water generation technology, heat recovery in non-potable systems, expanded leak detection, and breweries treating process water for reuse. Included in the Innovations Program are demonstration of new technologies and grant funds to support

5 Dual-plumbing is a plumbing system with two sets of pipes. One set of pipes is designed and used for the transmission of recycled water within buildings and structures, including lateral supply pipelines, and which is separate from the existing set of pipes or any potable water distribution system that complies with all material and construction specifications contained in City codes and other applicable State and Federal laws. There are several dual-plumbed buildings in San Francisco that installed the plumbing to comply with the Recycled Water Ordinance.
partnership opportunities. Examples of projects within the Innovations Program include a grant program to treat process water in breweries and grants to support onsite reuse projects with heat recovery systems. San Francisco’s Onsite Water Reuse Program allows for the collection, treatment, and use of alternate water sources for non-potable applications in individual buildings and at the district-scale. The onsite water reuse systems under the Non-Potable Ordinance apply to new, large development projects in San Francisco. The SFPUC is also pursuing a prospective project to expand leak detection and a project to test atmospheric water generation technology.

Activities this Quarter
The SFPUC continued to monitor the performance of the atmospheric water generation panels and worked with the contractor and project partners to develop signage to improve communication and outreach about the project and SFPUC’s innovative leadership.

The SFPUC continues to use several technologies and approaches to detect potential leaks in its system. This includes an ongoing pilot of the Ecologics acoustic leak detection platform.

Upcoming Activities
The SFPUC will continue developing projects to demonstrate the potential for water savings and supply with innovations in the coming quarter.

2.4 Project Summaries

In the following pages, single page summaries of each project are provided, along with current planning and development schedules and additional details of each project included in this program.
Summary of Alternative Water Supply Program

Project Description

As the SFPUC plans to 1) meet environmental flow obligations requirements and projected customer obligations demands for existing customers; 2) evaluate serving new permanent customers and providing additional supply for existing customers; and 3) prepare for future climate effects and other uncertainties through the 2045 water supply planning horizon, there is a need to look beyond current surface water supplies and operations of the San Francisco Regional Water System (RWS) and local groundwater sources. The Alternative Water Supply (AWS) Program was established to evaluate new and diverse “alternative” water supply options such as expanding storage, groundwater banking, transfers, purified water (potable reuse), desalination, and technological innovations that can increase supply.

While the AWS projects support the SFPUC’s goal of balancing meeting future water needs, they are not all necessarily centered around the surface water supply source. The projects that can provide direct water supply benefits and are currently being evaluated include four regional water supply projects, two regional storage expansion projects, and two local water supply projects in San Francisco.

<table>
<thead>
<tr>
<th>General Program Information</th>
<th>SFPUC Budget Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Annual Supply</td>
<td>Availability</td>
</tr>
<tr>
<td>Varies</td>
<td>Varies</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Project Costs</td>
<td></td>
</tr>
</tbody>
</table>

Programmatic Schedule

Proposed Schedule of Projects

<table>
<thead>
<tr>
<th>2010</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daly City Recycled Water Expansion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conveyance Alternatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brackish Water Desalination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACWD-USD Purified Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal Springs Purified Water (PREP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco Purified Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Francisco Satellite Recycled Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Vaqueros Reservoir Expansion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calaveras Reservoir Expansion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current Status	Risks and Uncertainties	Benefits
Planning | | |
18-Month Outlook | • Determining incremental water supply benefits | • Potential to meet future water supply needs
• Feasibility studies underway to identify and analyze project concepts | • Integrating new supplies with existing supplies |
Daly City Recycled Water Expansion

Project Description

This project can make an additional 0.7 mgd available in the South Westside Basin for drought supply. The project is envisioned to serve 13 cemeteries and other smaller irrigation customers with an average annual recycled water supply of 1.25 mgd, offsetting existing groundwater pumping from the South Westside Basin. This will free up groundwater, enhancing the reliability of the Basin. The project has been a regional partnership between the SFPUC, Daly City, and the California Water Service Company (Cal Water), in coordination with the Town of Colma and the irrigation customers who are located largely within Cal Water’s service area. As a private water utility, Cal Water’s participation in the project is subject to approval by the California Public Utilities Commission (CPUC). SFPUC customers will benefit from the increased reliability of the South Westside Basin for additional drinking water supply during droughts. In this way, this project supports the Groundwater Storage and Recovery (GSR) Project, which is under construction.

Project Partners

Daly City, Town of Colma, Cal Water and SFPUC

SFPUC Project Manager

YinLan Zhang

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7 MGD</td>
<td>Drought and All Years</td>
<td>Recycled Water / Groundwater Offset</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>2010</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Env. Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng. Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Outreach</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current Status

Planning

18-Month Outlook

- Identify Project ownership and cost structure among Partners (SFPUC, Daly City, Cal Water)
- Develop Term Sheet for project
- Outreach and communication with cemeteries and Colma

Risks and Uncertainties

- Securing customers (cemeteries and others)
- Partner buy-in and involvement
- Finalizing and procuring storage tank location
- Realizing groundwater offset benefits through GSR
- Loss of 1-2 SFPUC retail customers, dependent on negotiations with partners
- Securing customers (cemeteries and others)
- Partner buy-in and involvement
- Finalizing and procuring storage tank location
- Realizing groundwater offset benefits through GSR
- Loss of 1-2 SFPUC retail customers, dependent on negotiations with partners
- Reducing reliance of cemeteries on groundwater pumping for irrigation will increase the reliability of the Southwest Groundwater Basin for drinking water supply
- Recycled water supply may be available for additional customers (to be identified)
- Diversifying water supply portfolio
- Replace some potable water used for irrigation with recycled water (0.05 mgd)

Benefits

- Reducing reliance of cemeteries on groundwater pumping for irrigation will increase the reliability of the Southwest Groundwater Basin for drinking water supply
- Recycled water supply may be available for additional customers (to be identified)
- Diversifying water supply portfolio
- Replace some potable water used for irrigation with recycled water (0.05 mgd)
SFPUC-Alameda County Water District - Union Sanitary District Purified Water Partnership

Project Description
This project will provide a new purified water supply utilizing Union Sanitary District (USD)’s treated wastewater and further treating it through a multi-barrier advanced treatment process to meet or exceed drinking water standards. While the potential volume of supply will be determined through a feasibility evaluation, prior studies indicate the potential for at least 4 mgd of new supply. Purified water produced at USD could be transmitted to the Quarry Lakes Groundwater Recharge Area to supplement recharge into the Niles Cone Groundwater Basin or for other uses in Alameda County Water District’s (ACWD’s) service area. With the additional water supply to ACWD, an in lieu exchange with the SFPUC would result in more water left in the SFPUC’s Regional Water System. Additional water supply could also be directly transmitted to the SFPUC through a new intertie between ACWD and SFPUC. A range of scenarios considering treatment capacity, distribution potential and feasibility are being considered through an evaluation between the three partner agencies.

Project Partners
Union Sanitary District (USD), Alameda County Water District (ACWD) and SFPUC

SFPUC Project Manager
YinLan Zhang

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>All Years</td>
<td>Purified Water</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

|--------------------|--------------|------------------|-------------------|

SFPUC Budget Information

<table>
<thead>
<tr>
<th>10-YR CIP Budget Allocation:</th>
<th>$26.0M</th>
<th>Current Allocation:</th>
<th>$3.8M</th>
</tr>
</thead>
</table>

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>Eng. Design</td>
<td>Env. Review</td>
<td>Permitting</td>
<td>Construction</td>
</tr>
</tbody>
</table>

Current Status
Planning

18-Month Outlook
• Develop and analyze the two selected alternatives
• Uncertainty of planned capital improvements at wastewater treatment plant may affect purified water treatment requirements
• Potential water quality change to Quarry Lakes

Benefits
• Leverages existing facilities to provide water supply

Institutional Complexity
SFPUC Only
Multi-Party Partnership

Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.

Updated as of 5/20/2022
Crystal Springs Purified Water

Project Description

This is a purified water project that could provide 6-12 mgd of water supply through reservoir water augmentation at Crystal Springs Reservoir in San Mateo County, within the SFPUC’s Regional Water System (RWS). Treated wastewater from Silicon Valley Clean Water and/or the City of San Mateo would go through a water purification process that uses multi-barrier treatment technology to meet state and federal drinking water quality standards. The purified water would then be transmitted 10-20 miles (depending on the alignment) to Crystal Springs Reservoir, blended with regional surface water supplies and treated again at Harry Tracy Treatment Plant. In addition to the SFPUC and the wastewater agencies, Cal Water, Redwood City and BAWSCA are also participating in the project. Initial feasibility analyses have been completed. Additional planning, including analysis of feasible operational scenarios, impacts to RWS operations, and the evaluation of Direct Potable Reuse (DPR) alternatives, are needed to further evaluate the feasibility and impacts of this project.

Project Partners

Silicon Valley Clean Water, City of San Mateo, Cal Water, Redwood City, Mid-Peninsula Water District, Bay Area Water Supply and Conservation Agency (BAWSCA) and SFPUC

SFPUC Project Manager

YinLan Zhang

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>All Years</td>
<td>Purified Water</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

<table>
<thead>
<tr>
<th>Est. Capital Cost:</th>
<th>Est. Annual O&M:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

SFPUC Budget Information

10-Yr CIP Budget Allocation:

<table>
<thead>
<tr>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>Env. Review</td>
<td>Eng. Design</td>
<td>Permitting</td>
<td>Construction</td>
</tr>
</tbody>
</table>

Current Status

- **Planning**
 - Continue analysis of impacts of new water supply into Crystal Springs Reservoir
 - Complete Phase 3 Feasibility Study
 - Collaborate with partners on Basis of Design Report

Risks and Uncertainties

- Operational and water quality challenges in Crystal Springs Reservoir
- Construction challenges in parts of distribution area
- Water supply during non-drought years would impact operations and storage availability in the Regional Water System

Benefits

- Reduces Bay discharges
- Provides a new drought-resistant water supply

Institutional Complexity

SFPUC Only | Multi-Party Partnership

Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.

Estimated Project Schedule (Not a Baseline Schedule)

2015-2035

- Where We Are

2020-2035

- Planning
- Env. Review
- Eng. Design
- Permitting
- Construction
- Public Outreach
Project Description

The Los Vaqueros Reservoir Expansion (LVE) Project is a storage project that will enlarge the existing reservoir located in northeastern Contra Costa County from 160,000 acre-feet to 275,000 acre-feet. The main objectives of the expansion include increasing water supply reliability for municipal, industrial and agricultural customers as well as ecosystem benefits to south-of-Delta wildlife refuges and Delta fisheries. While the existing reservoir is owned and operated by Contra Costa Water District (CCWD), the expansion will have regional benefits and will be managed by a Joint Powers Authority that will be set up prior to construction. Meanwhile, Contra Costa Water District is leading the planning, design and environmental review efforts. The LVE Project includes construction of new pipelines, upgrades to existing facilities and reoperation of some facilities. Storage in LVE can provide a dry year water supply benefit to the SFPUC’s Regional Water System (RWS). Currently, SFPUC staff are pursuing scenarios of 20,000 - 40,000 acre-feet of storage. In addition, water supply and conveyance to the RWS need to be determined before the SFPUC determines the extent of participation in the LVE project. Conveyance Alternatives, Brackish Water Desalination, and BARR simulation are planning efforts that are linked directly to this project.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>To be identified in a separate project</td>
<td>Drought and/or All Years</td>
<td>Storage</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

- **Est. Capital Cost:** $110M
- **Est. Annual O&M:** TBD

SFPUC Budget Information

- **10-Yr CIP Budget Allocation:** $110.1M
- **Current Allocation:** $12.0M

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>Eng. Design</td>
<td>Env. Review</td>
<td>Permitting</td>
</tr>
<tr>
<td>Construction</td>
<td>Where We Are</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current Status

- Planning; Environmental Review

18-Month Outlook

- Project cost allocations
- Operational Details
- Service Agreements
- Initial Feasibility of water supply options
- Staff recommendations on conveyance and storage
- JPA Monthly Meetings

Benefits

- Provides operational flexibility, particularly in drier years
- Allows the SFPUC to manage existing supply more efficiently

Risks and Uncertainties

- Capacity and institutional constraints for conveyance to RWS
- Firm source of water supply
- Water quality risks and/or need for pretreatment, depending upon conveyance pathway

Project Partners

- Alameda County Water District (ACWD), CCWD, East Bay Municipal Utility District (EBMUD), SFPUC, Zone 7 Water Agency, and the San Luis Delta Mendota Water Authority

Senobar Lanigan

Institutional Complexity

- Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.
Conveyance Alternatives

Project Description
This project is dependent on the SFPUC’s participation in the Los Vaqueros Expansion Project in Contra Costa County. Through this evaluation, SFPUC staff will evaluate the potential mechanism(s) available to transfer or exchange water for the benefit of SFPUC Regional Water System (RWS) customers. The volume of water that can be transferred would be the same volume of water that is stored by SFPUC in Los Vaqueros Reservoir Expansion Project (to be determined).

The three conveyance alternatives that will be explored as part of this project using the South Bay Aqueduct (SBA) include 1) a transfer with ACWD; 2) a transfer with Valley Water; and 3) delivery to San Antonio Reservoir. Partners will include the SBA Contractors (ACWD, Zone 7 Water Agency, Valley Water), particularly any agency identified as a feasible transfer partner. Of the three options along the SBA, only one (delivery to San Antonio) provides a water supply directly into the RWS. Any conveyance option utilizing the SBA will likely include pipeline improvements and may also include pretreatment and/or pumping, depending on the option pursued. Reliability of the SBA is critical to the viability of these options.

In addition to the SBA, SFPUC is also considering other alternatives, including the potential for a new intertie with the East Bay Municipal Utility District (EBMUD).

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent on water supply</td>
<td>All Years</td>
<td>Transfer</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

<table>
<thead>
<tr>
<th>Est. Capital Cost:</th>
<th>Est. Annual O&M:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

SFPUC Budget Information

<table>
<thead>
<tr>
<th>10-Yr CIP Budget Allocation:</th>
<th>Current Allocation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$31.0M</td>
<td>$1.5M</td>
</tr>
</tbody>
</table>

Estimated Project Schedule (Not a Baseline Schedule)

Risks and Uncertainties
- Institutional arrangements / willingness of stakeholders
- Treatment and pre-treatment in some cases
- WQ challenges

Benefits
- Leverages existing infrastructure
- For exchanges with ACWD treatment will be delegated to a partner familiar with SBA as a source

Updated as of 5/20/2022
Bay Area Regional Reliability (BARR) Shared Water Access Program (SWAP)

Project Description
In 2016, eight of the Bay Area’s largest water utilities formed a partnership to explore opportunities to transfer and exchange water across service areas to better serve customers, particularly in times of droughts and emergencies. The partnership is intended to leverage the existing infrastructure and interconnections that exist between the partnering agencies. The Bay Area Regional Reliability (BARR) Partnership includes the following agencies: 1) Alameda County Water District (ACWD), 2) Bay Area Water Supply & Conservation Agency (BAWSCA), 3) Contra Costa Water District (CCWD), 4) East Bay Municipal Utility District (EBMUD), 5) Marin Municipal Water District (MMWD), 6) the San Francisco Public Utilities Commission (SFPUC), 7) Valley Water (formerly Santa Clara Valley Water District and 8) Zone 7 Water Agency.

The BARR Partnership has received two grants from the US Bureau of Reclamation to support for collaborative drought planning. A Drought Contingency Plan was completed in 2017. Currently, the BARR Partnership is planning to test water transfer scenarios through a Shared Water Access Program (SWAP) so that future transfers can be implemented more readily in times of drought or emergency. The SFPUC is participating in a water transfer simulation with ACWD and BAWSCA that would simulate the use of the South Bay Aqueduct (SBA) for an exchange with ACWD and a transfer into San Antonio Reservoir.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent on water supply</td>
<td>Drought Years</td>
<td>Conveyance/Transfer</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

<table>
<thead>
<tr>
<th>Est. Capital Cost:</th>
<th>Est. Annual O&M:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

SFPUC Budget Information

| CIP Budget Allocation: | $0.3M |

Institutional Complexity

<table>
<thead>
<tr>
<th>SFPUC Only</th>
<th>Multi-Party Partnership</th>
</tr>
</thead>
</table>

Benefits

• Encourages regional water supply planning and collaboration
• Leverages existing infrastructure

18-Month Outlook

• Report to the U.S. Bureau of Reclamation
• Evaluate institutional implications of exchange agreements

Risks and Uncertainties

• Institutional arrangements / willingness of stakeholders
• Exchange limitations caused by change in water quality parameters of concern

Current Status

Conceptual

Where We Are

Updated as of 5/23/2022
Project Description

The Bay Area Brackish Water Desalination (Regional Desalination) Project is a partnership between Contra Costa Water District (CCWD), SFPUC, Valley Water, and Zone 7 Water Agency. East Bay Municipal Utility District (EBMUD) and the Alameda County Water District (ACWD) may also participate. The project could provide 10-20 mgd of new drinking water supply to the region by treating brackish water from CCWD’s existing Mallard Slough intake in Contra Costa County. The project relies primarily on available capacity in an extensive network of existing pipelines and interties that already connect the agencies, as well as existing wastewater outfalls and pump stations. The new infrastructure needed for this project includes a treatment facility and upgrades to existing facilities. Zone 7 Water Agency would likely need a new intertie with EBMUD. Depending on the conveyance system used, additional pretreatment and/or facility upgrades may be needed.

Early planning studies conducted between 2003-2015 assumed that the project would provide a steady water supply of 9 mgd to the SFPUC in all years; however, the SFPUC is currently seeking drought year supply via storage in Los Vaqueros Reservoir from this project. The final volume share will be subject to negotiation with other partners. The SFPUC would not directly receive desalinated water, but would take delivery of water through a series of transfers and exchanges.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>Dry Years (with storage) and/or All Years</td>
<td>Desalination / Transfers</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

<table>
<thead>
<tr>
<th>Est. Capital Cost:</th>
<th>Est. Annual O&M:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

SFPUC Budget Information

<table>
<thead>
<tr>
<th>10-Yr CIP Budget Allocation:</th>
<th>Current Allocation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8.0M</td>
<td>$3.5M</td>
</tr>
</tbody>
</table>

Institutional Complexity

Project Partners

Contra Costa Water District (CCWD), East Bay Municipal Utility District (EBMUD), Valley Water, Zone 7 Water Agency and SFPUC

SFPUC Project Manager

Manisha Kothari

Planning (resumed)

Eng. Design

Permitting

Construction

Where We Are

Public Outreach (resumed)

Current Status

Planning

18-Month Outlook

• Feasibility analysis to be included as part of separate alternative water supply study supporting Los Vaqueros Expansion
• Supply potential and delivery mechanism to be worked out among partners

Current Status

Risks and Uncertainties

Benefits

• Some impacts to sensitive fish may be unavoidable
• Water rights and permitting likely to be challenging
• Conveyance options are limited to transfer water to Regional Water System

• Availability during dry years
• Lower GHG emissions than seawater desalination
• Leverages existing infrastructure
• Storage option in Los Vaqueros provide dry year benefits

Updated as of 5/23/2022
Calaveras Reservoir Expansion

Project Description
This storage project envisions the expansion of Calaveras Reservoir to store excess Regional Water System (RWS) supplies or other source water in wet/normal years. No expansion of water rights from the local watershed is anticipated. With the Calaveras Dam Replacement project in place, Calaveras Dam holds a capacity of 96,850 acre-feet, or 31 billion gallons of water. Through an expansion, up to an additional 289,000 acre-feet, or 94 billion gallons of storage could be realized. Calaveras Reservoir is owned and operated by the SFPUC for the benefit of RWS customers. No external partners are anticipated at this time. The expansion of Calaveras Reservoir would provide storage for additional water that can be available in all water year types. The proposed project would include raising the dam, increasing the capacity of the outlet structures and the spillway, and the addition of any transmission and pumping needed to bring water to Calaveras Reservoir. Constraints including water availability and conveyance will need to be evaluated.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Drought Years and/or All Years</td>
<td>Local Storage</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

<table>
<thead>
<tr>
<th>Est. Capital Cost:</th>
<th>TBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Est. Annual O&M:</td>
<td>TBD</td>
</tr>
</tbody>
</table>

SFPUC Budget Information

| 10-Yr CIP Budget Allocation: | $7.5M |
| Current Allocation: | $5.0M |

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>Env. Review</td>
<td>Eng. Design</td>
<td>Permitting</td>
<td>Construction</td>
</tr>
</tbody>
</table>

Where We Are

Current Status

Planning

Risks and Uncertainties

- Availability of additional water from the Tuolumne River to divert to storage

Benefits

- Provides operational flexibility, particularly in dry years
- Increases storage capacity in the SFPUC’s largest reservoir
- Increases utilization of Tuolumne River and other wet/normal year supply

Institutional Complexity

- **SFPUC Only**
- Multi-Party Partnership

Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.

Calaveras Reservoir

Project Partners

SFPUC Project Manager

Susan Hou

Updated as of 5/20/2022

36
Groundwater Banking

Project Description

Groundwater banking in the Modesto Irrigation District and Turlock Irrigation District (the Districts) service areas could be used to provide some additional water supply to meet instream releases in dry years reducing water supply impacts to the SFPUC service area. For example, additional surface water could be provided to irrigators in wet years, which would off-set the use of groundwater, thereby allowing the groundwater to remain in the basin rather than be consumptively used. The groundwater that remains in the basin can then be used in a subsequent dry year for irrigation, subsequently freeing up surface water that would have otherwise been delivered to irrigators to meet instream flow requirements.

Feasibility study of this option is included in the proposed Tuolumne River Voluntary Agreement.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>Drought Years</td>
<td>Groundwater / Storage</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

<table>
<thead>
<tr>
<th>Est. Capital Cost:</th>
<th>TBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Est. Annual O&M:</td>
<td>TBD</td>
</tr>
</tbody>
</table>

SFPUC Budget Information

| CIP Budget Allocation: | $0.0M |

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>2019</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Institutional Complexity

Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.

Project Partners

MID and TID
Groundwater users within the MID/TID service areas that also receive surface water deliveries from the Districts

SFPUC Project Manager

Ellen Levin and Michael Carlin

Current Status

Conceptual

18-Month Outlook

- Evaluate next step based on negotiations of Tuolumne River Voluntary Agreement

Risks and Uncertainties

- Institutional challenges relating to water rights and basin management

Benefits

- Additional storage, with availability in dry years
Inter Basin Collaborations

Project Description

Inter-Basin Collaborations could provide net water supply benefits in dry years by sharing responsibility for in-stream flows in the San Joaquin River and Delta more broadly among several tributary reservoir systems. One mechanism by which this could be accomplished would be to establish a partnership between interests on the Tuolumne River and those on the Stanislaus River, which would allow responsibility for streamflow to be assigned variably based on the annual hydrology. The Tuolumne system tends to spill more excess flow in wetter years than the Stanislaus, and this excess flow could be shaped and credited to meet Stanislaus system requirements, while New Melones Reservoir in the Stanislaus system is refilling. Then the stored water could be partially used to provide required streamflow to meet Stanislaus and Tuolumne requirements in future dry years.

Inter-Basin Collaborations could also include groundwater banking, utilizing the connections between the OID and MID surface water service areas.

Feasibility study of this option is included in the proposed Tuolumne River Voluntary Agreement. Any collaboration would need to protect the interests of all participants.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>Varies</td>
<td>Storage or Exchanges</td>
<td>Regional</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Total Project Cost

<table>
<thead>
<tr>
<th>Est. Capital Cost:</th>
<th>Est. Annual O&M:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

SFPUC Budget Information

<table>
<thead>
<tr>
<th>CIP Budget Allocation:</th>
<th>N/A</th>
</tr>
</thead>
</table>

Estimated Project Schedule (Not a Baseline Schedule)

![Project Schedule Diagram]

Current Status

Conceptual

18-Month Outlook

• Meeting with other parties to be scheduled pursuant to Voluntary Agreement negotiations

Risks and Uncertainties

• Collaboration will require agreements and operational changes among many public and private parties

Benefits

• Better management of basins can lead to greater regional water supply availability
• Water supply and environmental benefits

Updated as of 5/20/2022
Project Description

In 2008, the SFPUC Commission adopted the Water System Improvement Program (WSIP) Phased Variant to ensure that the SFPUC could continue to reliably meet the projected needs of its customers through 2030. One element of WSIP Phased Variant was a drought year water transfer. Coupled with the Regional Groundwater Storage and Recovery Project (GSR), this project was intended to ensure drought reliability in the planning horizon. The SFPUC pursued a long-term agreement to transfer 2 mgd from Modesto Irrigation District (MID) in drought years. However, the negotiations were terminated in 2012. Subsequently, SFPUC staff initiated discussions with the Oakdale Irrigation District (OID) to secure a similar drought year transfer. While no transfer has been secured to date, the SFPUC continues to pursue discussions with partners to explore potential transfer opportunities on the Tuolumne River and throughout the San Joaquin Valley.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>Drought Years</td>
<td>Transfer</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

- **SFPUC Budget Information**
 - **Est. Capital Cost:** TBD
 - **Est. Annual O&M:** TBD

Institutional Complexity

- **SFPUC Project Manager:** Ellen Levin and Michael Carlin

Project Partners

- SFPUC
- Oakdale Irrigation District
- Modesto Irrigation District

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>Year</th>
<th>Planning</th>
<th>2013</th>
<th>2018</th>
<th>2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current Status

- Conceptual

18-Month Outlook

- Resume discussions with Districts

Risks and Uncertainties

- Institutional arrangements / willingness of stakeholders
- Availability of supply

Benefits

- Leverages existing supply and existing infrastructure
San Francisco Purified Water

Project Description

The San Francisco Purified Water Project is a concept that envisions providing new, local drinking water supply in San Francisco. The project would treat secondary effluent sourced from one or both of San Francisco’s all-weather wastewater treatment plants through a multi-stage, multi-barrier advanced treatment process to produce water that meets state and federal drinking water standards. The treated water would then be blended at one or more of San Francisco’s drinking water reservoirs. This treatment and distribution process is referred to as treated water augmentation, and State regulations are still under development (anticipated by 2023). The SFPUC would have no external partners in developing the project infrastructure, but close coordination with regulators, other utilities contemplating similar projects, and our communities will be very important throughout the planning and development of this project.

Before engaging in project planning, SFPUC conducted initial research and testing around water quality, process reliability, and operational needs for purified water opportunities. Initial outreach with staff and local communities was also carried out. This building-scale research project (PureWaterSF) was completed in 2020 with grant support from the U.S. Bureau of Reclamation and the Water Research Foundation. Data revealed that the treatment processes operated as anticipated. A feasibility study has been completed identifying potential size, scale and other next steps. Additional research, testing, training and outreach are anticipated.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mgd</td>
<td>All Years</td>
<td>Purified Water</td>
<td>Local</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Project Partners

SFPUC only

SFPUC Project Manager

Manisha Kothari

Institutional Complexity

SFPUC Only Multi-Party Partnership

Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
<th>2045</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>Env. Review</td>
<td>Permitting</td>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where We Are

Current Status

Research / Conceptual

18-Month Outlook

- Share study findings
- Develop a stepwise approach for continued planning

Risks and Uncertainties

- Regulatory framework not in place until after 2023
- Need for additional testing, analysis and study
- Public perception

Benefits

- Reduces Bay discharges
- Takes advantage of treated recycled water availability

Updated as of 5/23/2022
Satellite Recycled Water

Project Description

The Satellite Recycled Water Project Feasibility Study evaluated a tertiary recycled water supply to meet the demands of dual plumbed buildings in San Francisco that do not currently have a non-potable water supply source. Based on prior surveys, there is likely less than 0.5 mgd of demand for existing buildings that have the ability to use non-potable water, but lack the supply. With some additional demands included, the study evaluated a small centralized tertiary treatment facility, storage tank, and transmission lines that would be located nearest to a majority of the end uses. This study concluded that there is no viable space for a treatment facility to meet the projected demands near the end uses. Therefore, the study recommends that treatment for up to 1.2 mgd of non-potable demands be evaluated along with purified water treatment through the SF Purified Water Project going forward.

This study is concluded and future analysis will be included as part of the SF Purified Water Study, rather than a standalone Satellite Recycled Water project.

Rendering of Chase Center in San Francisco

Project Partners

SFPUC only

SFPUC Project Manager

Taylor Nokhoudian

General Project Information

Average Annual Supply Availability Supply Type Local or Regional? Capital Cost/Acre-Foot

| Up to 0.5 mgd | All Years | Recycled Water | Local | TBD |

Total Project Cost

SFPUC Budget Information

| 10-Yr CIP Budget Allocation: | $4.8M | Current Allocation: | $0.8M |

Benefits

- Bridges gap not met by Non Potable Ordinance (NPO) for non-potable needs
- Reduces Bay discharges
- Potential for potable offset
- Matches right water for right use

Risks and Uncertainties

- High cost relative to customer potential
- Land availability
- Complexity of serving dispersed customers
- Potential for cross-connections

Conceptual

18-Month Outlook

- Future study of the non-potable demands identified here will be included in the SF Purified Water Project
Innovations Program

Project Description

This program supports development of new technologies and initiatives to demonstrate the feasibility of atmospheric water generation, heat recovery systems in non-potable systems, expanded leak detection, and breweries treating process water for reuse. Included in the Innovations Program are demonstration of new technologies and grant funds to support partnership opportunities. Examples of projects within the Innovations Program include grant funding to support the reuse of process water in breweries, and onsite reuse projects with heat recovery systems. The SFPUC is also testing leak detection technologies and will pilot the use of atmospheric water generation technology locally.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varies</td>
<td>Varies</td>
<td>Local</td>
<td>Local</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Planning (various)</td>
<td>Pilot Testing (various)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Where We Are</td>
<td></td>
</tr>
</tbody>
</table>

Current Status

Planning; Pilot Testing

Risks and Uncertainties

- Individual projects may be small, making them costly

Benefits

- Identifies new technology opportunities to increase efficiency and water availability

Project Partners

Various

SFPUC Project Manager

Paula Kehoe

Fog on Golden Gate Bridge

SFPUC Budget Information

- CIP Budget Allocation: $0.5M

Institutional Complexity

- Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.

Updated as of 5/20/2022
Section 3. Program Fundamentals

3.1 Introduction

This section includes background information on the Alternative Water Supply (AWS) Program and is intended to serve as a program reference. It includes information on how the AWS Program was established, program goals, planning priorities, program schedules, and information on resources for program administration such as staffing, funding, and contracting. Much of the information included in this section will be the same from one quarterly report to the next. However, new information may occasionally be added to the section, and useful information presented in the upfront sections of previous quarterly reports may be moved into this section from time to time. When new information is added, or if significant updates are made to previously included background information, the sections will be marked as “UPDATED”.

3.2 Purpose of the Program

As the SFPUC plans to 1) meet environmental flow requirements and projected obligations for existing customers; 2) evaluate serving new permanent customers and providing additional supply for existing customers; and 3) prepare for future climate effects and other uncertainties through the 2045 water supply planning horizon, there is a need to look beyond current surface water supplies and operations of the SFPUC’s RWS and local groundwater sources. The AWS Program was established to evaluate new and diverse “alternative” water supply options such as expanding storage, groundwater banking, transfers, purified water (potable reuse), desalination, and technological innovations.

The AWS Program includes four regional water supply projects, two regional storage expansion projects, and two local water supply projects in San Francisco. In addition to regional and local water supply projects, the AWS Program includes evaluating and supporting existing infrastructure and pursuing complementary infrastructure options to meet future water supply needs. Included in this category are one evaluation of conveyance to deliver new supplies (under the LVE Project), one simulation of a transfer that can provide insight into the feasibility of a new water supply and exchange opportunities (BARR SWAP), and one project to explore new ways of increasing supply or offsetting demand increases in San Francisco (San Francisco Purified and Recycled Water). Studies are underway to evaluate all these projects. Finally, there are also three additional water supply projects that would require partnerships with Irrigation Districts on the Tuolumne and/or Stanislaus Rivers (referred to here as upcountry projects). These projects may be analyzed in the coming months, in conjunction with negotiation efforts with the State on the Bay Delta Water Quality Control Plan (Bay-Delta Plan). The upcountry projects are described in these quarterly reports, and more information will be provided on their development as it becomes available.
The SFPUC is still in the early stages of planning and significant uncertainties about cost, volume and timing of supply availability remain. However, all the projects under consideration will require significant capital investments and ongoing operations and maintenance support. Storage projects can provide significant water supply volume and can be operated to maximize dry year deliveries when the SFPUC’s anticipated needs are greatest, but they require water supply. Desalination and potable reuse projects offer supplies in the range of 5-12 mgd each, but will likely have significant permitting, water rights and other regulatory considerations. They are also more difficult to operate intermittently for dry year supply. The lowest-cost projects being considered will likely be the non-potable supply projects, but non-potable demands are increasingly limited, particularly in San Francisco. The tradeoffs associated with projects and other technical, institutional, operational, and financial considerations will continue to be studied and reported on through the planning phase of project development for the AWS projects.

The relative volume and cost of the alternative water supply projects are shown in Figure 4 below. Purple dots represent non-potable supply projects, blue dots represent potable supply projects, and yellow dots represent storage projects.

Figure 4. Relative Volume and Cost of Alternative Water Supply Projects

Dot size is an indicator of relative $/AF costs. The sizes are intended for illustrative purposes only, as project-specific costs are still being developed. Purple dots represent non-potable supply projects. Blue dots are for potable supply projects. Yellow dots represent storage projects.
3.3 Planning Needs, Priorities and Service Objectives

The need to pursue the various alternative water supply options stems from the significant water supply needs that the SFPUC faces within the planning horizon and because traditional supplies are increasingly limited. While these needs will continue to evolve over time, the adaptive planning approach under the AWS Program is focused on being able to explore and plan a diverse set of water supply options to meet needs when they arise while continuing to provide reliable and sustainable water supply to all of the SFPUC’s retail and wholesale customers.

Among the water supply needs before the SFPUC, the most significant is represented by the need to make up for new instream flow requirements on the Tuolumne River. In December of 2018, the State Water Resources Control Board (State Board) adopted amendments to the Bay-Delta Plan. For the SFPUC, the effect of this action is a requirement to leave 40% of unimpaired flows in the Tuolumne River to achieve fishery improvements in the Bay-Delta system. SFPUC staff determined that the impact of this new flow requirement in the Tuolumne River would be a reduction in available water supplies by approximately 93 mgd during dry years at the current contract levels of demand.

The SFPUC is pursuing litigation against the State Board and is simultaneously seeking a compromise solution through a Voluntary Agreement with the State of California. In the meantime, water supply projects take years and even decades to plan and implement. Complexities of implementing alternative water supply projects can require even longer lead times for planning than traditional water supply projects. Thus, there is an urgency to plan new water supply opportunities that provide dry year reliability to continue meeting the highest priority needs and deliver reliable service.

In the AWS planning framework, water supply needs will be met in the order of priority. These planning priorities, which were first articulated for the Commission in August 2016, have been slightly modified over time and are expressed as follows:

1. Offset instream flow needs and meet regulatory requirements (obligatory)
2. Meet existing obligations to existing permanent customers (obligatory)
3. Make current interruptible customers permanent (policy decision)
4. Meet increased demands of existing and interruptible customers (policy decision)

In conjunction with these planning priorities, the SFPUC considers the level of service (LOS) Goals and Objectives related to water supply and sustainability when planning for new water supply opportunities. The key LOS Goals and Objectives relevant to AWS planning are as follows:

- Meet dry-year delivery needs while limiting rationing to a maximum 20 percent system-wide reduction in water service during extended droughts
• Diversify water supply options during non-drought and drought periods
• Improve use of new water sources and drought management, including groundwater, recycled water, conservation, and transfers
• Meet, at a minimum, all current and anticipated legal requirements for protection of fish and wildlife habitat
• Provide operational flexibility (although this LOS Goal was not intended explicitly for the addition of new supplies, it is applicable here)

Together, the planning priorities and LOS Goals and Objectives provide a lens to consider the water supply options and opportunities to meet the foreseeable water supply needs.

3.3.1 Planning Objectives

Consistent with the SFPUC’s LOS Goals and Objectives, the AWS Program aims to plan for and develop new capital projects that can ensure the delivery of reliable water service to its customers throughout the planning horizon. Maintaining reliable water service includes balancing water demands with supply availability, and it also includes having the necessary treatment, conveyance, storage, and distribution infrastructure to support water supply deliveries.

On the demand front, the SFPUC has contractual obligations to provide 184 mgd (Supply Assurance) to Wholesale Customers. Similarly, the SFPUC provides 81 mgd to retail customers. Together, this represents 265 mgd of water supply delivery obligations. San Jose and Santa Clara, interruptible customers of the SFPUC, have requested a minimum permanent supply of 9 mgd and up to 15.5 mgd of dedicated supply. The Commission will have to make a policy decision by 2028 on whether to provide this new supply assurance. For planning purposes, the AWS Program includes 9 mgd for San Jose and Santa Clara, enabling the Commission to make this commitment in the future. Figure 5 below shows the current and potential future obligations, as well as demand projections consistent with the SFPUC’s 2020 Urban Water Management Plan.
Meanwhile, other uncertainties remain on the supply side of the equation. Based on the SFPUC’s system modeling, the RWS would be able to deliver 257 mgd in 2045 under planned drought conditions and current water supply policies, including rationing. Implementation of the Bay-Delta Plan, as adopted, would reduce supply availability during droughts by 93 mgd. Changes in precipitation associated with climate change, new permitting requirements and regulations, and future curtailments are additional factors that can affect supply availability within the planning horizon. These supply-side uncertainties can also trigger the exploration of new water supplies.

3.3.2 Planning Approach: Plan for Obligations, Build for Demands

Recognizing that through the 2045 planning horizon 1) projected demands are lower than the SFPUC’s obligations and 2) there are uncertainties around supply availability, the AWS team is developing a stepwise planning approach to meet customer obligations and implement new projects. It is important to note that while the SFPUC must prepare to meet its obligations by identifying feasible water supply and associated capital improvement projects, implementation of these large infrastructure projects may be deferred until the need is more imminent for the SFPUC to meet delivery needs. Through the planning process, key decision points for each project must be identified with an understanding of its own risks and benefits, so that the SFPUC can make informed decisions at multiple points within the project on whether and how to proceed. With this adaptive approach, the SFPUC can minimize the financial and operational risks of overcommitting or having insufficient water supplies to fill the gap between demand and supply as both continue to evolve.
Developed in line with this framework, the focus of the current planning effort and the AWS Program is on meeting water supply needs that are evaluated based on the contractual obligations, projected demands, and the available supplies. With the variability in the obligations and projected demands, it is important for the AWS team to simultaneously, aggressively plan for obligations and advance those projects that will ensure that projected demands are met. The matrix below shows the water supply needs under different planning scenarios.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Obligations for Permanent Wholesale Customers, Anticipated Obligations for Interruptible Customers, and Retail Allocation</td>
<td>274</td>
<td>Water supply available with no new instream flow requirements</td>
<td>257 17</td>
</tr>
<tr>
<td>Water Supply available with implementation of the Bay-Delta Plan and rationing</td>
<td>152</td>
<td>122</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planning for Demands (2045) Drought Year</th>
<th>Demands (mgd)</th>
<th>Available Water Supply (mgd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projected Demands in the Retail and Wholesale Service Areas accounting for conservation, and offsets from onsite water recycling and non-SFPUC System supplies</td>
<td>236.4</td>
<td>Water supply available with no new instream flow requirements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>257 -</td>
</tr>
<tr>
<td>Water Supply available with implementation of the Bay-Delta Plan and rationing</td>
<td>152 84</td>
<td></td>
</tr>
</tbody>
</table>

As shown in the matrix, the water demands account for the demand offsets or the reduction resulting from conserving water and implementation of onsite water recycling programs in San Francisco. The SFPUC provides comprehensive water conservation program services open to all residents and businesses in San Francisco by way of the following programs:

- The Innovations Program (described in Section 2) promotes exploration of new ways to conserve and reuse water, recover resources, and diversify water supplies.

- The Local Water Program provides conservation assistance, promotes recycled water to meet San Francisco’s most significant irrigation needs, mandates non-potable supplies for toilet flushing and irrigation in new developments and develops local groundwater to enhance the City’s drinking water supply sustainably now and into the future.

- The Onsite Water Reuse Program allows for the collection, treatment, and use of alternate water sources for non-potable applications in individual buildings and at the district-scale. Under the Non-potable Ordinance, onsite water reuse systems are required for new, large development projects in San Francisco. Recently amended in
2021, Article 12C of the San Francisco Health Code, the ordinance requires new development projects of 100,000 gross square feet or more to install and operate an onsite water reuse system.

The SFPUC has implemented conservation programs to minimize both indoor and outdoor retail water demands, resulting in a per capita residential water consumption rate of 42 gallons per person per day, a rate that is half the statewide average. Although not a core part of AWS planning, the demand offsets are accounted for and updated as part of AWS planning efforts. Recent demand offset i.e., an equivalent reduction in retail demand is estimated at 1.9 mgd.

With the adoption of the Bay-Delta Plan in 2018, the AWS team is proceeding with the assumption that it would be implemented. Although the flow volume may change with the Voluntary Agreement negotiations, the current water supply need to meet obligations is estimated to be 122 mgd. Under the same flow scenario, the water supply needed to meet projected demands is estimated to be 84 mgd.

With the central objective of meeting water supply needs, the planning approach for the AWS Program allows for a process that understands the range of estimated needs and supply availability in the context of uncertainties. It thus informs the different decisions from identifying and conceptualizing projects, planning them, to implementing or advancing them forward.

3.4 Making San Jose and Santa Clara Permanent Customers

Currently, the Cities of San Jose and Santa Clara are interruptible customers of the SFPUC. While the SFPUC has never interrupted water supply to San Jose and Santa Clara, the 2009 Water Supply Agreement with the Wholesale Customers allows the SFPUC to issue a conditional notice of termination of supply if sufficient long-term water supplies from the RWS are not available. As customer demands increase and uncertainties loom regarding future water supply availability, San Jose and Santa Clara have requested to become permanent customers of the SFPUC. Permanent status would give San Jose and Santa Clara the ability to guarantee water supply availability to support planned growth in the northern portion of each of these cities.

For San Jose and Santa Clara to become permanent customers of the SFPUC, an additional 9 mgd of new, year-round supplies would be needed to meet historic demand levels and up to 15.5 mgd would be needed to meet planned demand through 2045. The 2045 water supply needs for the AWS Program account for the 9-mgd deliveries to San Jose and Santa Clara as part of anticipated wholesale customer obligations.

<table>
<thead>
<tr>
<th>Customer</th>
<th>Historic Demand</th>
<th>Projected Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Jose</td>
<td>4.5 mgd</td>
<td>9 mgd</td>
</tr>
<tr>
<td>Santa Clara</td>
<td>4.5 mgd</td>
<td>6.5 mgd</td>
</tr>
</tbody>
</table>
Under the 2009 Water Supply Agreement, as amended, the SFPUC is committed to making a decision about whether to make San Jose and Santa Clara permanent customers by December 31, 2028. In order to give San Jose and Santa Clara permanent status, the SFPUC would have to identify specific water supplies based on which to provide individual supply guarantees at the combined historic level of 9 mgd. Environmental review for the identified project(s) should be complete for the SFPUC to be able to select water supply alternatives to implement.

Through the evaluation of alternative water supplies, the SFPUC intends to identify supplies that can meet anticipated dry year needs and help the SFPUC Commission make a policy decision regarding permanent status for San Jose and Santa Clara by 2028.

3.5 New Alternative Water Supplies

While the RWS will remain the backbone of the SFPUC’s wholesale and retail supply into the future, stresses on that system and new water supply needs require that alternative water supplies are considered along with creative and sustainable new solutions within the planning horizon to remain resilient and fully meet our needs. In addition to the opportunities identified, SFPUC staff are also continuing to seek more options. The supply categories that are being used for the AWS planning effort are described in the paragraphs below.

Storage (volume dependent on supply availability and conveyance). Both surface water and groundwater storage provide opportunities to hold water when it can be conserved so that it can be available when it is needed the most (dry years). The amount of water storage that can be used is dependent on the amount of additional supplies that could be secured as well as the capacity of the conveyance facilities that connect storage to the RWS. The Calaveras Reservoir Expansion Project and the LVE Project would provide new storage opportunities. The Daly City Recycled Water Expansion Project would offset groundwater pumping in Colma, leaving more groundwater in the South Westside Basin, supporting the reliability of the ongoing Groundwater Storage and Recovery Project during dry years. In addition, the SFPUC is exploring opportunities for inter-basin collaborations and regional groundwater banking in the Tuolumne River watershed. Expanding the capacity of Hetch Hetchy Reservoir was considered but is not being pursued in the planning horizon at this time.

Dry Year Transfers (~2 mgd). A transfer of water from another agency utilizing existing facilities during dry years would be an ideal way to efficiently utilize existing water supplies. However, during droughts is when there is a significant shortage in water supply, so securing dry year transfers has proven difficult in the past due to institutional complexities. SFPUC staff are continuing to pursue all feasible opportunities.

Purified Water (Potable Reuse) (~10-25 mgd). Potable reuse is a process by which treated effluent from a wastewater treatment plant undergoes advanced treatment, including filtration, reverse osmosis, disinfection, and advanced oxidation, to produce purified water (the product) that is comparable to drinking water standards. Depending on the nature of the project, this purified water can be used to augment surface water supplies, recharge a
groundwater basin, or be blended in a drinking water reservoir for direct distribution. The latter form of potable reuse (also termed as treated water augmentation) is not yet regulated, but expected to be in 2023. Several utilities in California are considering purified water projects.

Unlike dry year transfers or storage projects that can enhance drought period reliability, potable reuse projects are generally designed to be operated in all years, including wet/normal years when use and storage capacity for that water may be limited or unavailable. In addition to pursuing these projects, SFPUC staff continue to look for design and technology solutions for intermittent or scalable use.

Desalination (~5-15 mgd). The Brackish Water Desalination Project could provide 5-15 mgd of new supply for the SFPUC. The proposed project would be located in East Contra Costa County with partners including CCWD, Zone 7 Water Agency and Valley Water. EBMUD and ACWD may play an active role in the project in the future. Similar to potable reuse projects, a regional desalination project would likely need to be operated year-round to maintain the integrity of the treatment systems unless scalable design or technology solutions are identified. However, developed in conjunction with the LVE Project, this project could be used to provide greater dry year supply reliability.

3.5.1 Water Supply Programs not included in the AWS Program

In 2008, the SFPUC Commission adopted the Phased Water Supply Improvement Program, a variant of the proposed program that included 10 mgd of conservation, recycled water and groundwater in San Francisco, and 10 mgd of conservation, recycled water and groundwater in the wholesale service area.

San Francisco is implementing its 10 mgd increment of local supply through the Local Water Supply Program. The program includes the San Francisco Groundwater Supply Project to augment San Francisco’s retail water supply with local groundwater, and several recycled water projects, including the Westside Enhanced Water Recycling Project, to provide non-potable water for irrigation.

Individual wholesale customers have implemented active conservation programs in their service areas to maintain low per capita use and are similarly investing in groundwater and water recycling programs to offset potable demands. The SFPUC does not track non-RWS supplies in the wholesale service area; however, staff shares best practices and coordinates on planning and messaging through BAWSCA and common planning efforts.

It’s important to note that the projects identified to meet the 10 mgd local water supply commitments under Phased Water Supply Improvement Program were being planned well before the new water supply needs of 84 mgd to 122 mgd were identified; therefore, they are not counted toward meeting the current water supply needs that are the focus of the AWS Program.
3.6 Planning for Implementation

If all the projects identified through the SFPUC’s current AWS planning process to date could be implemented, there would still be a supply shortfall to meet dry year demands with San Jose and Santa Clara all-year water supply needs included. Furthermore, each of the supply options being considered has its own inherent challenges and uncertainties that may affect our ability to implement it.

Given the limited availability of water supply alternatives - unless the supply risks are significantly reduced or the water supply needs change significantly - the SFPUC will continue to plan, develop and implement all project, partnership and policy opportunities that can help bridge the anticipated water supply gaps. In 2019 a survey was completed among water and wastewater agencies within the SFPUC service area to try to identify additional opportunities for purified water. Such opportunities remain limited, but staff continue to pursue all possibilities, and water supply options identified here may be augmented over time.

3.7 Trends and Risks

Of the regional water supply options being considered, there is only one (Calaveras Reservoir Expansion) that does not involve multi-party partnerships with institutional complexities. In all other cases, the SFPUC relies on our partner water and wastewater utilities to move forward due to jurisdictions over water sources or infrastructure. Therefore, other agencies’ priorities, decision-making processes, funding, and other constraints are also factors in the feasibility, cost, and schedule of these regional projects (Figure 6).

Figure 6. Special Considerations for the Alternative Water Supply Program

Another risk facing some of the projects is regulatory uncertainty. While the State Board has adopted regulations for some forms of potable reuse, including groundwater injection and surface water augmentation, it has yet to pass regulations concerning direct potable reuse.
Without clear regulatory guidance, projects with direct potable reuse components are at risk due to uncertainties concerning water quality criteria, treatment technologies, and overall feasibility.

3.8 Timeframe

Planning is progressing for the proposed AWS projects. Given the level of complexity and uncertainty, project implementation is expected to take between 10 and 30 years. As planning continues, the timing of water supply needs will be taken into account such as implementation of Bay-Delta Plan requirements during the next drought or the decision by 2028 to make San Jose and Santa Clara permanent customers.

As with traditional infrastructure projects, there is a need to progress systematically from planning to environmental review, and then on to detailed design, permitting and construction of the AWS projects. Given the complexity and inherent challenges described in the previous sections, these projects will require a long lead time to develop and implement.

Typically, a minimum of 10% design is needed to obtain the level of project detail required to begin preparation of an environmental document. To achieve this, the SFPUC will need to work closely with its partners to complete the feasibility phase of the projects and make decisions about which projects to pursue no later than 2023. Environmental review for the Los Vaqueros Reservoir Expansion Project and the Daly City Recycled Water Expansion Project are complete. Other AWS projects described in this report are moving toward completing feasibility studies by or before 2023.

A high-level schedule overview of each AWS project is shown on the next page. The AWS Plan development is also in process and will be completed by July 2023. As shown in the schedule, the AWS Plan will be developed concurrently with ongoing project-level analyses.
Completion of Alternative Water Supply Plan

Decision for 1) dry year supplies for existing customers and 2) San Jose and Santa Clara permanent status

Regional Projects
- Daly City Recycled Water Expansion
- Los Vaqueros Conveyance Alternatives
- Brackish Water Desalination (Los Vaqueros Water Supply)
- ACWD-USD Purified Water
- Crystal Springs Purified Water (PREP)
- Los Vaqueros Reservoir Expansion
- Calaveras Reservoir Expansion
- San Francisco Purified Water

Local Projects
- Satellite Recycled Water

Up Country Projects
- Groundwater Banking
- Inter-Basin Collaboration
- Dry-Year Transfers

Innovations Program

Ongoing Outreach and Education

Planning, Env. Review, Design, Construction
3.9 Staffing

In order to advance the planning for several of the AWS projects expeditiously, the SFPUC established a new group within the Water Resources Division in 2020. The group has four project managers: two focused on detailed project-specific efforts; one focused on local and regional projects and coordination with other resource areas; and one dedicated to long-term planning including the development of the AWS Plan by 2023. The group is led by planning manager who focuses on program management and implementation including cross-project planning.

3.10 Water Supply Task Force

Success in planning water supply projects will ultimately depend on the ability to operate and integrate the new supplies into the existing water supply network. This goal is even more challenging when the new water supplies are from very different sources from the existing surface water and groundwater supplies.

To advance the AWS projects in a thoughtful way, the SFPUC has a Water Supply Task Force that brings together a cross-functional group including planning, policy, environmental management, operations, water quality, finance, legal, and communications resources. Through early and frequent communications on all of the proposed projects, this group helps in anticipating long-term risks and challenges and addressing them early in the planning process. The Water Supply Task Force convenes every two weeks and has continued to do so remotely since March 2020.

3.11 Regional Project Funding

As of February 2022, the SFPUC’s 10-year CIP budget includes $404 million for the planning and implementation of regional AWS projects. This includes full implementation anticipated for the Daly City Recycled Water Expansion Project and the LVE Project. Of this budget, $48 million has been appropriated for planning and design activities.

3.12 Professional Services Contracts

The Water Resources Division is managing two as-needed joint venture contracts with a capacity of $4 million each with 1) Carollo Engineers and Water Resources Engineering (WRE) and 2) Woodard and Curran and SRT Consultants. Some of the capacity in these contracts will be used for planning studies associated with the AWS Program, as needed to meet planning objectives. These contracts enable the SFPUC to move quickly to evaluate specific planning needs. If necessary, other as-needed contracting capacity through the Water Enterprise may also be available. It is anticipated that additional professional services support will be utilized to advance planning efforts.
3.13 Adapting to an Uncertain Future

The AWS Program is intended to identify, screen and plan for new alternative water opportunities that can help meet the SFPUC’s foreseeable water supply needs over the planning horizon. Recognizing that these projects would introduce new sources of supply and require new partnerships, this program necessarily requires an integrated and holistic planning approach, both within the SFPUC and with external partners. Given the uncertain nature of planning needs, it also requires some built-in adaptability and flexibility. As this section described, the AWS Program has the infrastructure and resources needed to continue to plan in a changing environment.