Table of Contents

Report Overview & Organization ... 4

Section 1. Program Highlights and Updates .. 5

1.1 Program Purpose *(UPDATED)* ... 5

1.2 Quarterly Highlight *(NEW)* .. 6

1.2.1 Distribution of Alternative Water Supplies ... 6

1.3 Ongoing Program Activity Updates .. 10

1.3.1 Status of Ongoing Coordination with San Jose and Santa Clara *(UPDATED)* 10

Section 2. Status of Projects .. 11

2.1 Regional Projects *(ALL CURRENT AND UPCOMING ACTIVITIES UPDATED)* 13

2.1.1 Daly City Recycled Water Expansion ... 13

2.1.2 ACWD-USD Purified Water .. 14

2.1.3 Crystal Springs Purified Water .. 15

2.1.4 South Bay Purified Water Project *(NEW)* .. 16

2.1.5 Los Vaqueros Reservoir Expansion ... 18

2.1.6 Bay Area Brackish Water Desalination .. 24

2.1.7 Calaveras Reservoir Expansion ... 25

2.2 Upcountry Projects ... 26

2.2.1 Groundwater Banking .. 26

2.2.2 Inter-Basin Collaborations ... 26

2.2.3 Dry Year Transfers .. 27

2.3 Local Projects *(ALL CURRENT AND UPCOMING ACTIVITIES UPDATED)* 27

2.3.1 San Francisco Purified Water .. 27

2.3.2 Innovations Program ... 28

2.4 Project Summaries .. 29

Section 3. Program Fundamentals .. 45

3.1 Introduction .. 45

3.2 Purpose of the Program .. 45

3.3 Planning Needs, Priorities and Service Objectives .. 47
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>Planning Objectives (UPDATED)</td>
<td>48</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Planning Approach: Plan for Obligations, Build for Demands (UPDATED)</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Making San Jose and Santa Clara Permanent Customers (UPDATED)</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>New Alternative Water Supplies</td>
<td>52</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Water Supply Programs not included in the AWS Program (UPDATED)</td>
<td>53</td>
</tr>
<tr>
<td>3.6</td>
<td>Planning for Implementation</td>
<td>54</td>
</tr>
<tr>
<td>3.7</td>
<td>Trends and Risks</td>
<td>54</td>
</tr>
<tr>
<td>3.8</td>
<td>Timeframe</td>
<td>55</td>
</tr>
<tr>
<td>3.9</td>
<td>Staffing</td>
<td>58</td>
</tr>
<tr>
<td>3.10</td>
<td>Water Supply Task Force</td>
<td>58</td>
</tr>
<tr>
<td>3.11</td>
<td>Regional Project Funding</td>
<td>58</td>
</tr>
<tr>
<td>3.12</td>
<td>Professional Services Contracts</td>
<td>58</td>
</tr>
<tr>
<td>3.13</td>
<td>Adapting to an Uncertain Future</td>
<td>59</td>
</tr>
</tbody>
</table>
Report Overview & Organization

The Quarterly Report for the Alternative Water Supply (AWS) Program provides an update to the SFPUC Commission, stakeholders, and the public on the status of regional and local water supply, storage and conveyance projects that are being planned to meet anticipated needs in the SFPUC’s service area. The Quarterly Report provides updates every three months on program activities, but also contains discussion around relevant planning considerations, as well as background information so it can serve as a standalone document for the first-time reader.

This report provides updates on program and project-related activities that occurred between June and August 2022. The Quarterly Report is divided into three sections: Section 1. Program Highlights and Updates; Section 2. Status of Projects; and Section 3. Program Fundamentals.

Section 1. Program Highlights and Updates. This section provides a discussion of program-level planning activities and considerations. Within this section, there is a discussion around different Quarterly Highlights each quarter. The highlights provide detail on one or two key themes and information on how they relate to the program, in order to provide context for future decision-making. Also included in this section is an update on Ongoing Program Activities.

For this report’s Quarterly Highlight, there is a discussion of the distribution of alternative water supplies currently being planned. Diversification of water supply sources provides greater reliability systemwide. However, the introduction of new supply sources also raises new considerations around operations, water quality, and equitable distribution during project planning.

Section 2. Status of Projects. This section provides a summary of activities associated with each of the projects being evaluated as part of the AWS planning efforts. The project status updates are broken out to include three to five sections based on their relevance: Project Background, which provides a brief summary of the key elements and objectives of each project; Current Planning Considerations, which are included for context regarding the near-term activities for a project; and sections on Activities This Quarter and Upcoming Activities that are updated each quarter. To provide a sense of the institutional complexity of the project, a schematic on Project Partners & Interests is included at the outset of each project section where the SFPUC is working with external partners.

Section 3. Program Fundamentals. This reference section provides background information on AWS planning activities. It includes information on the rationale, priorities, structure, challenges, opportunities, schedule, and resources related to the program. For the first-time reader, this section provides a complete preface to the AWS Program and may be a useful starting point in reading this Quarterly Report.
Section 1. Program Highlights and Updates

1.1 Program Purpose *(UPDATED)*

The purpose of the Alternative Water Supply (AWS) Program is to evaluate new projects that will help meet future water supply needs in the San Francisco Public Utilities Commission (SFPUC) service area. The AWS Program looks beyond existing infrastructure and surface water supplies of the Regional Water System (RWS) and local groundwater sources, to new and diverse or “alternative” water supply options such as groundwater banking, surface water storage expansion with a potential for diverse water supply sources, water transfers, purified water\(^1\) (potable reuse), desalination as well as technological innovations and other tools that can increase supply or reduce demand.

The central planning objective of the AWS Program is to augment RWS supplies to improve reliability in drought years to meet the retail and wholesale demands on the RWS through the 2045 planning horizon. Stated differently, the AWS Program sets out to try to fill the gap between anticipated supplies and demands on the RWS for retail and wholesale customers, which could be significant under future drought conditions. The water supply need for this program is calculated as the difference between the anticipated water supply provided through the RWS in dry years and projected purchases from the RWS in 2045 – after accounting for conservation and existing or planned local water supplies.

On the supply front, the water supply need accounts for factors such as the potential instream flow requirements that would affect available water supplies in dry years. On the demand side, the water supply need accounts for 1) the SFPUC’s contractual obligations to retail and wholesale customers including an additional 9 million gallons per day (mgd) for the two interruptible customers\(^2\) (Cities of San Jose and Santa Clara); and 2) the 2045 projected demands from RWS as a source by both wholesale and retail customers. Based on the difference between the SFPUC’s anticipated total obligations and expected supply availability in the RWS, the additional water supply need would be 122 mgd by 2045. However, cumulative estimated purchase requests from customers of the RWS over the planning horizon are projected to be lower than the obligations.\(^3\) Comparing RWS demand projections to water supply availability in 2045, the need for new dry year water supplies would be 94 mgd *(Figure 1)*. This water supply need (discussed further in Section 3) has increased from 84 mgd, as reported in prior AWS quarterly reports. This increase reflects a shift toward higher anticipated

\(^1\) Purified water is the treated effluent from a wastewater treatment plant that has undergone advanced treatment, including filtration, reverse osmosis, disinfection and advanced oxidation.

\(^2\) The SFPUC is contractually obligated to making a decision about whether to make San Jose and Santa Clara permanent customers by December 31, 2028.

\(^3\) Demands for the water provided through the RWS account for savings from conservation and offsets from water supplies other than RWS and onsite water recycling.
Planning for alternative water supplies requires a comprehensive and detailed evaluation effort that considers several interrelated challenges, many of which are different than those faced for traditional water supply planning at the SFPUC. These planning challenges include new and potential regulations, multi-party partnerships, and approaches for integrating supplies into the existing water system. Additionally, as with any long-term water supply planning effort, the SFPUC must also contend with future uncertainties such as instream flow needs, climate change, and future curtailments during droughts. These planning challenges and uncertainties highlight the importance of being thoughtful and adaptive in planning for the AWS Program.

1.2 Quarterly Highlight (NEW)

As SFPUC staff plan AWS projects, often in partnership with other water and wastewater agencies, there are various implementation considerations. One such consideration is the distribution of the supplies produced from different water sources. This quarterly highlight describes issues that emerge while determining how and where the water supplies developed through the AWS Program might be delivered.

1.2.1 Distribution of Alternative Water Supplies

The water supply in the RWS generally flows east to west by gravity, from the Sierra Nevada to San Francisco. Surface water supplies rely on storage and conveyance infrastructure that distribute those supplies throughout the SFPUC’s service area. The locations of AWS projects

4 The SFPUC sells water to 26 wholesale customers (collectively referred to as the Wholesale Customers) under the terms of a 25-year contract.
currently being planned have been identified based on the availability of infrastructure and resources such as reservoirs that can be expanded, available water transfers, conveyance infrastructure, and wastewater or brackish water available to treat for potable use (shown in Figure 3 in Section 2 of this report).

1.2.1.A Point of Connection

As several AWS projects leverage the facilities of external partners, the tie-in locations for the delivery of new supply sources to the RWS are often logically based on proximity and feasibility of connecting to existing facilities. For example, for the ACWD-USD Purified Water Project, in addition to supplementing water supplies within the ACWD service area, the project partners are considering if and where direct connections can be made to deliver the new supplies to the RWS. Three of the SFPUC’s Bay Division Pipelines run through the ACWD service area. The project team concluded that a new connection to a Bay Division Pipeline could be built either to the north of ACWD’s desalination facility or in the eastern hills near Irvington Portal, both locations where the Bay Division Pipelines are closest to large ACWD pipelines or facilities. From a distribution standpoint, the tie-in location determines the point at which new supplies would be introduced downstream (to the west) into the RWS.

1.2.1.B Operations

Capacity, timing of deliveries and storage, flow rates, and operating pressures are some of the factors in considering the appropriate tie-in location for new AWS projects. In the ACWD-USD Purified Water example described above, the Bay Division Pipelines have a combined capacity of approximately 180 mgd. ACWD’s large-diameter pipelines in the vicinity of its nearby desalination facility can also be extended. This provides an ideal location for the tie-in connection between the two systems. However, the pressure in ACWD’s system is lower than that of the Bay Division Pipelines and a new pump station would be required. Connecting two systems and introducing new water supply sources can also limit operational flexibility, which needs to be addressed during project planning. When available capacity of major transmission pipelines is used by new supplies, the tradeoff may be that it becomes more difficult to move existing supplies within the system. This can also affect the operation of other related facilities.

1.2.1.C Water Quality

The AWS projects include the delivery of water supplies from new sources to the RWS, which currently primarily conveys surface water supplies from the Tuolumne River and Bay Area watersheds. AWS projects will introduce water from the San Francisco Bay/Sacramento – San Joaquin Delta Estuary (Delta) through the Los Vaqueros Reservoir Expansion Project and purified water from multiple projects. The AWS Program also increases the availability of groundwater through the Daly City Recycled Water Expansion Project. The result is that water from a number of alternative supply sources may be commingled with the predominantly surface water supply in the RWS, as demonstrated in Figure 2.
Figure 2. Distribution of Alternative Water Supplies

While each supply source will meet or exceed federal and state drinking water standards and be subject to testing and monitoring on an ongoing basis, the combined effect of multiple supply sources in the distribution system will be evaluated during project planning. For example, in the Crystal Springs Purified Water Project, the project team is evaluating potential water quality requirements based on the potential impact of purified water being stored with surface water supplies in the reservoir.

1.2.1.D Water Supply Reliability and Equitable Distribution

Having diverse water supply sources naturally improves water supply reliability. Therefore, the more the water supply sources in a given part of the service area, it stands to reason that there will be greater water supply resilience in that area. However, it is not uncommon for perceived differences in water quality by customers and this difference can impact what is considered equitable distribution of supplies. Public acceptance of varied water supplies will be important for the successful implementation of AWS projects. For example, surface water supplies from the RWS have long been viewed as a high-quality source by SFPUC customers. While the SFPUC will maintain its high-quality standards across all supply sources, customers may not perceive alternate sources such as groundwater, transfer water, or purified water with the same regard despite meeting or exceeding the same regulatory standards and testing and monitoring requirements. Public engagement through outreach and information sharing can help improve the deliverability of projects and distribution of supplies.

While it is not possible to evenly distribute each supply source throughout the service area, the SFPUC strives to achieve equitable distribution of supplies throughout the retail and wholesale service areas. In planning, this means that there is a conscious effort by staff to ensure that
both the increased reliability and the physical distribution of new supplies is as wide-ranging as practical across the service area.

Equitable distribution is also an important consideration at the local level. The San Francisco Purified Water Project will leverage wastewater facilities in San Francisco to produce recycled water and purified water. Since San Francisco lies at the western end of the RWS, distribution of the new water supplies produced by this project will likely be limited to the city, replacing surface water supplies from the RWS. Extending distribution to a larger part of the SFPUC’s service area outside of San Francisco would require either a) reoperation of RWS facilities from west to east, or b) building new infrastructure, such as new pipelines and pump stations over a long distance. Both of these options would be costly and inefficient. As the SFPUC moves forward with planning for this project, equitable distribution of purified water within the city is also important. In the recently completed feasibility study for the project, four scenarios were designed and analyzed. Each scenario includes two advanced water treatment plants, one on the west side and one on the east side of the city to ensure distribution of facilities and supplies across San Francisco.

In addition to distribution of supplies, AWS planning considers equity as part of building, operating, and maintaining AWS facilities, consistent with the SFPUC’s Racial Equity Plan. AWS projects present opportunities for workforce development through new jobs and skills such as the Advanced Water Treatment Operator Certification. With several purified water projects being developed, SFPUC staff are identifying opportunities for training and apprenticeship early. In parallel, staff are identifying opportunities for avoiding and minimizing any disproportionate impacts from the AWS projects to disadvantaged communities consistent with the SFPUC’s Environmental Justice Policy.

Another important consideration related to distribution and equity is affordability. Balancing the large capital and operational investments required for the AWS projects while maintaining affordable rates for the customers is key. While the distribution of some supplies may be limited geographically based on infrastructure, the equitable distribution of costs can and will be based on the benefits that customers receive systemwide. SFPUC staff are in the process of conducting financial analyses for the AWS program to understand potential ratepayer impacts at a planning level.

Overall, SFPUC staff will work with project partners and customers to ensure that water distribution for the AWS program is as broad as possible, recognizing both the benefits and challenges of disseminating water supply from diversified sources throughout the service area. SFPUC staff will continue to examine such issues for successful execution of AWS projects and to incorporate them in the planning and outreach processes.
1.3 Ongoing Program Activity Updates

1.3.1 Status of Ongoing Coordination with San Jose and Santa Clara (UPDATED)

Planning Considerations for San Jose and Santa Clara’s Permanent Status

Planning for alternative water supplies is proceeding with the intention to be able to make the Cities of San Jose and Santa Clara permanent customers of the SFPUC. Based on the requests from San Jose and Santa Clara, that means providing at least 9 mgd of additional water supply guarantees to the two cities collectively. In addition, San Jose and Santa Clara have requested that the SFPUC consider its normal year demands of up to 15.5 mgd; this represents 6.5 mgd in excess of the requested combined supply guarantees in years when sufficient RWS supplies are more likely to be available.

Consistent with the SFPUC’s planning priorities, when evaluating potential AWS supplies, the SFPUC’s existing commitments to meet instream flow requirements and meet ongoing obligations to existing permanent customers must be considered when deciding to make interruptible customers permanent or meeting increased demands of existing and interruptible customers. Distinct from San Jose and Santa Clara’s all-year needs, meeting existing obligations requires securing dry-year supplies.

Since August 2020, the Bay Area Water Supply & Conservation Agency (BAWSCA) has facilitated monthly discussions with San Jose and Santa Clara to collectively consider project opportunities and interests. In addition to reviewing projects that are already listed in the AWS Program, the agencies worked together to consider project opportunities that may provide multiple water supply benefits as well.

In July of 2022 the SFPUC, San Jose, and Santa Clara initiated a feasibility study to evaluate a purified water project concept that can potentially meet both the all-year needs of San Jose and Santa Clara and produce dry year supplies for the benefit of all RWS customers. Progress on the analysis of this South Bay Purified Water Project is being added to the list of projects described in Section 2.1 of this report.
Section 2. Status of Projects

Staff are currently studying the feasibility of regional projects (outside of SFPUC’s retail service area) and local projects (within SFPUC’s retail service area) that can contribute to meeting the needs and priorities identified for this planning effort. Three projects in the San Joaquin Valley (upcountry projects) have also been identified. Collectively, these regional, local, and upcountry projects represent new water supplies, local supply opportunities, a study of conveyance options, an innovations program, a potential local policy option, and a water transfer simulation that can help answer some planning questions. This section provides a status of each of these efforts, which are organized geographically and shown in Figure 3.

Each project status discussion that follows in Sections 2.1, 2.2, and 2.3 includes the following subsections: Project Background and Current Planning Considerations, which is included for purposes and context, and Activities This Quarter and Upcoming Activities that are updated each quarter. A schematic on Project Partners & Interests appears at the beginning of each of the regional projects in Section 2.1 in which there are multiple partners.
Figure 3. Map of Regional AWS Program Activities
2.1 Regional Projects
(ALL CURRENT AND UPComing ACTIVITIES UPDATED)

2.1.1 Daly City Recycled Water Expansion

Project Partners & Interests

<table>
<thead>
<tr>
<th>SFPUC</th>
<th>Daly City (Sanitation District)</th>
<th>Cal Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase drought supply reliability</td>
<td>Reduce ocean discharges</td>
<td>Develop local supplies</td>
</tr>
</tbody>
</table>

Project Background
This project supports the SFPUC’s Groundwater Storage and Recovery Project (currently under construction) by making an additional 0.7 mgd of groundwater available in the South Westside Basin for drought supply. The project is envisioned to serve 7 cemeteries and other smaller irrigation customers with new recycled water supply, replacing existing groundwater pumping from the Basin. This will free up groundwater, enhancing the reliability of the Basin. The project has been a regional partnership between the SFPUC, Daly City, and the California Water Service Company (Cal Water), in coordination with the Town of Colma and the irrigation customers who are located largely within Cal Water’s service area. As a private water utility, Cal Water’s participation in the project is subject to approval by the California Public Utilities Commission. SFPUC customers will benefit from the increased reliability of the South Westside Basin for additional drinking water supply during droughts.

Current Planning Considerations (UPDATED)
The current planning questions driving near-term project activities include:

1) How will the responsibilities and costs be allocated among the project partners?

2) How can project partners collaborate with potential customers to realize water supply benefits for all parties?

Activities this Quarter
This quarter, SFPUC staff focused on outreach to the cemeteries in collaboration with the Town of Colma. The project team aims to host an in-person event that would re-engage the cemeteries in the planning process and determine their interest in using recycled water to increase the storage of potable groundwater supplies in the Westside Basin. SFPUC and the Town of Colma also met with Holy Cross Cemetery to discuss costs and project timeline.
Upcoming Activities
In the coming quarter, the SFPUC will continue to engage with the cemeteries and work with the partners to develop more details about cost-sharing and other terms of a preliminary agreement to move the project into design.

2.1.2 ACWD-USD Purified Water

Project Partners & Interests

<table>
<thead>
<tr>
<th>SFPUC</th>
<th>Alameda County Water District (ACWD)</th>
<th>Union Sanitary District (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase Dry Year Supply</td>
<td>Reduce dependence on SFPUC Regional Water System</td>
<td>Reduce Bay discharges</td>
</tr>
</tbody>
</table>

Project Background
This project could provide a new purified water supply utilizing Union Sanitary District’s treated wastewater. Purified water produced by advanced water treatment at Union Sanitary District could be transmitted to the Quarry Lakes Groundwater Recharge Area to supplement recharge into the Niles Cone Groundwater Basin or put to other uses in Alameda County Water District (ACWD)’s service area. With the additional water supply to ACWD, an in-lieu exchange with the SFPUC could result in more water left in the Regional Water System. Additional water supply could also be directly transmitted to the SFPUC through a new intertie between ACWD and the SFPUC’s Bay Division Pipelines.

Current Planning Considerations
The current planning questions driving near-term project activities include:

1) What is the maximum potential purified water that can be produced and put to beneficial use from this project?

2) What are the considerations and tradeoffs, such as costs and infrastructure needs, of the two selected alternatives that the partners wish to study?

Activities this Quarter
During this quarter, the project team continued to perform technical analyses on two alternatives for the feasibility study which include purified water concepts that could recharge the groundwater basin through Quarry Lakes as a first phase and provide water supply to ACWD or the SFPUC directly as a second phase. There are two variations of this phased concept based on whether or not planned capital improvements at the wastewater treatment facility are assumed. The partner agencies completed review of the draft chapters on cost and environmental review.

Upcoming Activities
In the coming quarter, the consultant team will incorporate feedback from the Partner agencies and provide a complete draft of the feasibility study for review.
2.1.3 Crystal Springs Purified Water

Project Partners & Interests (UPDATED)

<table>
<thead>
<tr>
<th>SFPUC</th>
<th>Silicon Valley Clean Water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>City of San Mateo</td>
</tr>
<tr>
<td></td>
<td>Increase dry-year supply or supply for San Jose / Santa Clara</td>
</tr>
<tr>
<td></td>
<td>Reduce Bay discharges</td>
</tr>
<tr>
<td></td>
<td>Cal Water</td>
</tr>
<tr>
<td></td>
<td>BAWSCA</td>
</tr>
<tr>
<td></td>
<td>Redwood City</td>
</tr>
<tr>
<td></td>
<td>Mid-Peninsula Water District</td>
</tr>
<tr>
<td></td>
<td>Increase dry-year supply</td>
</tr>
</tbody>
</table>

Project Background
The Crystal Springs Purified Water Project could generate up to 12 mgd of purified water and would likely be implemented in two phases. Treated wastewater from Silicon Valley Clean Water and/or the City of San Mateo would be conveyed to an advanced water treatment plant to produce purified water that meets state and federal drinking water quality standards. In the first phase, the project would produce 6-8 mgd of purified water, which would be conveyed via pipelines to Crystal Springs Reservoir where it would be blended with regional surface water supplies and then treated again at Harry Tracy Water Treatment Plant. In the second phase of the project, 4-6 mgd of additional purified water would be treated at the advanced water treatment plant and added directly to the distribution systems in the region through treated water augmentation. Details of the second phase of the project will be developed further once regulations for direct potable reuse are finalized by December of 2023.

Current Planning Considerations
To evaluate the merits of the project to produce water supply to meet dry-year needs, the SFPUC will need to answer the following near-term planning questions:

1) Will the project be eligible for state and federal funding support?

2) How will partners share in the cost and long-term benefits of the project?

3) How will a new water supply in Crystal Springs Reservoir affect water quality, operational needs, and distribution of RWS supplies?

Activities This Quarter
The focus for the partner agencies in this quarter has been finalizing and approving the Memorandum of Agreement (MOA) for the Basis of Design document for a phased hybrid project. Silicon Valley Clean Water, San Mateo, and Redwood City have approved and signed the MOA; others, including SFPUC, will approve the MOA in early Fall. The Basis of Design report will be the precursor to environmental review for this project.
This quarter, the project team also completed a draft feasibility study report for the project. Following an initial meeting with and review from the U.S. Bureau of Reclamation, the partners have decided to wait until some further analysis and assignment of roles is completed before submitting the project for funding consideration under the Title XVI program.

Upcoming Activities
Next steps for the project team include MOA approval by all the partners and kicking off the Basis of Design Report. In parallel, the partners will also consider alternatives to the proposed project concept that can be evaluated and included in the feasibility study.

2.1.4 South Bay Purified Water Project (NEW)

Project Partners & Interests

![Diagram of project partners and interests]

Project Background

SFPUC continues to plan to meet future demands and obligations with the intention to make the Cities of San Jose and Santa Clara permanent customers. Based on the request from San Jose and Santa Clara, permanent status requires SFPUC to provide at least 9 mgd of additional water supply guarantees to the two cities collectively.

Given the intent and interests described above, the SFPUC, San Jose, and Santa Clara launched a project partnership to explore and potentially implement a joint purified water project that would serve the local demands of San Jose and Santa Clara during all types of water years, while also supplementing the water supply provided through the SFPUC’s RWS in dry years. The feasibility of this concept, including the potential capacity, sharing of supply, operation and distribution, will be evaluated in a feasibility study over the next several months.

Current Planning Considerations

An initial concept that is being explored is a 10-mgd advanced water treatment facility (i.e., purified water facility) that would use source water from the San Jose-Santa Clara Regional Wastewater Facility and operate at 6.5-mgd capacity during wet and normal years. During dry years, the facility would ramp up to the full 10-mgd capacity. The additional 3.5 mgd of purified water produced during dry years would be fed into the RWS to increase dry year reliability. A feasibility study that kicked off in July will explore this initial concept in addition to an option that will maximize production capacity and various options for blending and distribution.
Furthermore, the source water flow and quality will be characterized based on actual dry-year data to provide a conservative approach and to ensure that the project would be able to operate during dry years.

To evaluate the merits of the project to produce water supply to meet dry year needs, the SFPUC will need to answer the following near-term planning questions:

1) Is there a technically viable project that can provide purified water for the Regional Water System customers as well as for local customers of San Jose and Santa Clara?

2) What are some viable planning scenarios for a mutually beneficial project?

3) Where should the new water supply tie into the RWS? How will this affect water quality, operational needs, and distribution of RWS supplies?

Activities This Quarter

In June, the project partners finalized a scope of work, schedule, and budget for the Feasibility Study and initiated a task order through the SFPUC’s Water Resource As-Needed contract. A kickoff meeting between the project partners and the consultant team was held in July. Project partners are currently responding to information requests from the consultant about water quality and flow data, existing infrastructure, and considerations for future infrastructure.

In parallel with the technical work described above, the project partners also prepared a Memorandum of Agreement (MOA) detailing the roles and responsibilities of the partners with respect to the Feasibility Study and the terms for sharing and payment of its costs. The cost of the Feasibility Study will be divided equally among the three partners. The MOA language was finalized by staff in July and is moving forward for formal approval by each partner’s governing body or other authority.

Upcoming Activities

The consultant team will continue to develop and evaluate various project options as part of the Feasibility Study. The study is anticipated to be completed in Spring of 2023.

The MOA is anticipated to be fully executed by SFPUC, San Jose, and Santa Clara next quarter.

The South Bay Purified Water Project will also be identified as a standalone project in SFPUC’s upcoming 10-year Capital Improvement Plan budget.
2.1.5 Los Vaqueros Reservoir Expansion

Project Partners & Interests

<table>
<thead>
<tr>
<th>CCWD</th>
<th>ACWD Zone 7 Water Agency</th>
<th>SFPUC with BMPSCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBMUD</td>
<td>Valley Water</td>
<td>Increase Dry Year Supply or Supply for San Jose / Santa Clara</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Luis & Delta Mendota Water Authority</td>
<td>Grassland Water District</td>
<td>DWR (State)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USBR (Federal)</td>
</tr>
</tbody>
</table>

Increase water supply reliability
Increase water supply reliability
Increase water supply for irrigation
Protect wildlife refuges
Provide approvals and funding

Project Background (UPDATED)

The Los Vaqueros Reservoir Expansion (LVE) Project is a storage project that will enlarge the existing reservoir located in Contra Costa County from 160,000 acre-feet to 275,000 acre-feet. While the existing reservoir is owned and operated by Contra Costa Water District (CCWD), the expansion will have regional benefits and will be managed by a Joint Powers Authority (JPA). The JPA was formed and filed with the State in October 2021 and the JPA Board of Directors’ monthly meetings began in November 2021. The JPA will provide governance and administration for the project and the JPA members will assist in the design, construction, operation, and administration of the project.

CCWD is the lead agency on the planning, design and permitting efforts, with grant funds provided by the State and federal government, and contributions from Local Area Partners (LAPs) through Multi-Party Cost Share Agreement amendments.

The additional storage capacity from the LVE Project would provide a dry-year water supply benefit to the SFPUC. However, securing water supply to store in the LVE and ensuring that conveyance is available can both be significant barriers to realizing the full water supply potential of storage for SFPUC customers. In particular, issues related to water supply have been the focus for the SFPUC staff in determining the extent of participation in the LVE Project.

To better understand the water supply and conveyance options and the effects related to decision-making for the LVE Project, two subprojects were developed. The subprojects are listed below and described in Sections 2.1.5A and 2.1.5B:

1. Conveyance Alternatives (evaluating conveyance from LVE to RWS facilities);

2. The Bay Area Regional Reliability (BARR) Partnership Shared Water Access Program (SWAP) is a simulation to evaluate the potential impacts of conveyance from LVE to San Antonio Reservoir within the RWS, as well as an exchange with ACWD.
In addition, water supply options are being considered both in combination with or separate from storage in LVE. One of these options is using the CCWD’s existing point of diversion at Mallard Slough in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary (Delta) and treating the water through the Bay Area Brackish Water Desalination Project. The treated water could serve as a source of supply that can be exchanged with CCWD for supply in LVE. This project is described in Section 2.1.5 below.

Current Planning Considerations (UPDATED)

The current planning questions driving near-term project activities include:

1) What are the feasible water supply options available to fill storage in Los Vaqueros Reservoir for the SFPUC? What are the opportunities and constraints associated with water supply?

2) What are the costs and constraints of taking water deliveries through the South Bay Aqueduct?

3) What are the operational constraints of LVE facilities to a) fill storage and b) take deliveries in dry years?

4) Are exchanges with partner agencies a feasible alternative to direct deliveries to the SFPUC? If so, under what conditions?

Activities This Quarter

Developments in planning, permitting, design, and funding during this quarter as described below.

Planning, Permitting, and Design

Coordination continues on several permit applications that were previously submitted to the U.S. Fish and Wildlife Service and the California Department of Fish and Wildlife, Central Valley Regional Water Quality Control Board, and other regulatory agencies. Draft water rights change petitions have been submitted to the State Water Resources Control Board for preliminary review.

The Los Vaqueros Dam design is nearly complete. A Basis of Design Report was submitted to the California Division of Safety of Dams. Upon approval of this submission, CCWD will request approval to construct from the Division as part of the requirements of the California Water Commission Final Award Hearing.

An inspection contract for the Los Vaqueros Dam Transfer Pipeline – the inlet/outlet pipeline for the dam – was awarded in July. The inspection work is planned to begin in September.
Evaluation of alternative alignments for the Transfer-Bethany Pipeline through sensitive areas continues in coordination with key local stakeholders. Geotechnical investigations have been completed at the terminus of the pipeline, where the pipeline connects to the California Aqueduct (Turn-In). The 60-percent design of the Turn-In has been prepared and is under review by the Department of Water Resources. Geotechnical investigations for the Pumping Plant No. 1 Replacement project have been completed and 60-percent design is being developed.

SFPUC staff continue to participate in the monthly Los Vaqueros Design Review team meetings alongside other JPA Members. The Design Review team provides technical overview for all components of the LVE Project. In this quarter, the team reviewed the Pumping Plant No.1 design and value engineering study as well as several dam design components such as upstream water management, stilling basin improvements, high level outlet vents, risk assessment, and a risk register.

State and Federal Funding

Federal funding for the project is expected to provide 25% of the total project cost or approximately $160 million, of which $14 million was appropriated in Fiscal Year 2021 and $50 million in Fiscal Year 2022. Future federal funding requests will include the remainder of the maximum federal share, some portion of which may be available in the Bipartisan Infrastructure Law that was signed on November 15, 2021. An additional $7 million for the project planning cost share was secured from the U.S. Bureau of Reclamation in this quarter.

The LVE project qualified for funding under the Water Storage Investment Program and received an adjusted Maximum Conditional Eligibility Determination of over $477.5 million from the California Water Commission on March 16, 2022. This amount reflects an inflation adjustment of 1.5% and an increase in over $7 million from the previous award.

WIFIA Funding

The JPA Board adopted a resolution for submittal of a Letter of Interest to the U.S. Environmental Protection Agency to express intent to apply for a loan under the Water Infrastructure Finance and Innovation Act (WIFIA). The WIFIA loan could provide a low-cost financing solution to the JPA and reduce the overall cost of financing for the partners.

The requested loan amount for Letter of Interest purposes is in an amount not to exceed $675 million which reflects 49% of eligible project costs which is the maximum amount for such a loan. The amount can be revised upwards or downwards in the WIFIA loan application that will start the second phase of the WIFIA borrowing process. The first draft of the Letter of Interest and supplemental information was shared with LVE partners for review and input in this quarter.
Local Area Partners

The LAPs have been contributing funds to the LVE project since 2017 through a series of local cost share agreements between CCWD and other JPA Members. The Multiparty Cost Share Agreement was executed in 2019 and has been amended multiple times. Funds from Amendment No. 3 to the Multiparty Cost Share Agreement continue to support the project activities in this quarter. The term of Amendment No. 3 covers local funding for expenses incurred through December 31, 2022.

The LAPs anticipate the scope and budget for Amendment No. 4 to the Multiparty Cost Share Agreement in September. Amendment No. 4 will extend the agreement term through June 30, 2023. The SFPUC’s share of Amendment No. 4 is estimated at $1.1M.

JPA Budget

Fiscal Year 2023 is the first full fiscal year for the JPA. One-year budget for this fiscal year was approved by the JPA Board of Directors in June. The JPA Members collectively will contribute $10.8 million this year.

WIFIA Funding

Through executive participation at the LVE Board of Directors and staff level participation in the LVE Finance Work group and CCWD-led financial workshops, the SFPUC continues to provide comments and feedback on the development of this methodology.

Los Vaqueros Reservoir Expansion Joint Powers Authority (JPA)

The Los Vaqueros Reservoir JPA Board of Directors continues to meet monthly. The JPA Board directed staff to proceed with the recruitment process for an Executive Director in March 2022. An Ad Hoc Committee formed to make the initial selection of candidates will be conducting the first round of interviews. The Executive Director will be responsible and accountable for technical, administrative, and policy level tasks to advance the LVE project.

As the interim administrator for the project, CCWD has received two proposals from consultants to provide Capital Project Management Support services for the project. The final contract is planned to be awarded to the selected consultant in September.

The JPA’s Joint Exercise of Powers Agreement requires the Board to adopt a budget prior to the start of the fiscal year on July 1. Through adoption of Resolution No. 6-22-02, the JPA Board approved the FY2022-23 Budget in June, which includes the JPA’s administrative and operational costs. The JPA Board also adopted resolutions for Establishing a Records Retention Policy and Adopting a Social Media Policy and the Communications and Outreach Committee Charter. The agenda and supporting information for the JPA Board Meetings are available on the JPA website: http://www.losvaquerosjpa.com.
Upcoming Activities

Activities expected to take place in the next quarter are as follows:

- Construction cost update for the project including dam expansion and the Transfer-Bethany Pipeline
- LVE Project cost estimate update
- Continue the identification and preliminary characterization of water supply options
- Submittal of WIFIA letter of Interest to the U.S. Environmental Protection Agency and determination of eligibility
- Initiate WIFIA cost-benefit analysis with the assistance of the LVE financial consultant, in collaboration with CCWD’s engineering team and the LVE Financial Work Group
- Approval of Multiparty Agreement Amendment No.4 and development of Interim Funding Agreement
- Methodology for grant funding allocation and the financial impact on the LAPs
- The final contract for the Capital Project Management Support is planned to be awarded to the selected consultant

2.1.5.A Conveyance Alternatives

Project Background

The SFPUC is considering the Los Vaqueros Reservoir as a dry-year supply. Two main pathways involve moving water from storage in a prospective LVE Project to the SFPUC’s service area, either directly to RWS facilities or indirectly via an exchange with partner agencies. The first and preferred path is through the South Bay Aqueduct (SBA), and the second pathway is through East Bay Municipal Utility District (EBMUD).

The SBA is a 49-mile aqueduct, which is part of the State Water Project, owned by the California Department of Water Resources (DWR). Three State Water Project contractors (SBA Contractors) maintain contract capacity for use of the SBA: Zone 7 Water Agency, ACWD, and Valley Water. The SBA is in close geographical proximity to SFPUC’s San Antonio Reservoir and the Sunol Valley Water Treatment Plant. SFPUC staff, in coordination with BAWSCA, have been working with the SBA Contractors to develop a clear understanding of what the maximum potential use of the SBA could be that would be of benefit to the SFPUC and what constraints may exist to achieving those benefits.

Current Planning Considerations

As indicated under the LVE Project, identifying a viable conveyance pathway is critical for the SFPUC’s participation. The primary focus of this task has been to understand the capacity within the SBA and evaluate an alternative through EBMUD.

Activities this Quarter

The SFPUC and DWR continued discussions on technical and financial terms and conditions of a conveyance agreement for the Los Vaqueros supplies. Three of the alternatives involve
exchanges with the SBA Contractors and one involves wheeling through an agreement with DWR under the California Water Code 1810. DWR, as the owner, would have discretion in deciding when unused capacity is available. More information on the source of water is needed prior to entering into a conveyance agreement with DWR.

In addition to direct deliveries to the SFPUC facilities, SFPUC staff are also pursuing exchanges with SBA Contractors. ACWD is a State Water Project SBA Contractor as well as SFPUC’s Wholesale Customer. Also, the SFPUC and the Santa Clara Valley Water District (Valley Water), another State Water Project SBA Contractor have common customers including Cities of San Jose and Santa Clara. Discussions have been ongoing through this quarter with both agencies regarding potential exchanges. The potential for an exchange with ACWD is being evaluated through the BARR SWAP project described below.

Upcoming Activities
In the coming quarter, staff will continue to engage with ACWD and Valley Water to understand the constraints and condition of exchanges.

2.1.5.B Bay Area Regional Reliability Shared Water Access Program (BARR SWAP)

Project Background
As part of the BARR Partnership, a consortium of 8 Bay Area water utilities (including ACWD, BAWSCA, CCWD, EBMUD, Marin Municipal Water District (MMWD), SFPUC, Valley Water, and Zone 7 Water Agency) is exploring opportunities to move water across the region as efficiently as possible, particularly during times of drought and emergencies.

The BARR agencies initially proposed two separate pilot projects through the Shared Water Access Program (SWAP) to test conveyance pathways and identify potential hurdles to better prepare for sharing water during a future drought or emergency. A strategy report identifying opportunities and considerations will accompany these pilot transfers will be completed in 2022. This work is supported with grant funds from the U.S. Bureau of Reclamation and the participating water agencies.

The first proposed pilot (Pilot 1A) is a desktop simulation that assumes the existence of some facilities that are currently not in place. The second pilot (Pilot 2A) was a physical exchange of water between two federal Central Valley Project Contractors, CCWD and Valley Water. Due to drought conditions, a third pilot testing Central Valley Project transfers between CCWD and EBMUD was added to the BARR SWAP effort.

Current Planning Considerations
This simulation tested the conveyance of water from an expanded Los Vaqueros Reservoir through the SBA. The agencies participating in this simulation are the SFPUC, ACWD, and BAWSCA. This BARR SWAP project is helping the SFPUC evaluate two aspects of LVE Project feasibility:
1) Potential water quality impacts and treatment needs associated with a new water supply through the SBA into San Antonio Reservoir and Sunol Valley Water Treatment Plant; and

2) Potential for exchange with ACWD, offsetting demand on the water provided through the RWS.

Activities this Quarter
In this quarter, a draft BARR SWAP report was prepared and reviewed by the BARR partner agencies. Comments are being incorporated by the consultant team.

Upcoming Activities
In the next quarter, the BARR partners will meet with the project’s Stakeholder Task Force and the final BARR SWAP report will be submitted to U.S. Bureau of Reclamation for review.

2.1.6 Bay Area Brackish Water Desalination

Project Partners & Interests (UPDATED)

<table>
<thead>
<tr>
<th>CCWD</th>
<th>Zone 7 Water Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBMUD</td>
<td>SFPUC</td>
</tr>
<tr>
<td></td>
<td>Valley Water</td>
</tr>
</tbody>
</table>

Project Background (UPDATED)
The Bay Area Brackish Water Desalination (Regional Desalination) Project is a partnership between CCWD, EBMUD, SFPUC, Valley Water, and Zone 7 Water Agency. The project could provide a new drinking water supply to the region by treating brackish water from CCWD's existing Mallard Slough intake in Contra Costa County. This project has independent utility as a water supply project, but it could be combined with storage in LVE to provide a dry year source of supply. While the allocations remain to be determined among partners, the SFPUC is considering a water supply of approximately 5 mgd.

Current Planning Considerations
The SFPUC is considering desalinated brackish water as a source for storage in LVE. For that scenario, the current planning questions include:

1) What are the conditions needed to make an exchange of water to fill SFPUC storage in LVE in wet years possible?

2) What are the losses associated with an exchange and related conveyance?
3) What are the alternatives to desalination for water supply storage in LVE?

Activities this Quarter
The SFPUC has initiated a Water Supply Analysis evaluating this project along with other water supply alternatives that can be stored in an expanded Los Vaqueros Reservoir. Following the initial screening of technically feasible alternatives, in the last quarter, the second phase of the Water Supply Feasibility Analysis started in this quarter. The objective of this phase is to refine the evaluation of the projects identified and retained from the first phase by confirming project yields, consideration of water rights and contract requirements including limitations and additional constraints for Central Valley Project water exchanges and South Bay Aqueduct capacity limitations.

In collaboration with CCWD, staff will continue outreach efforts to coordination with potential regional and other partners to verify information and confirm interest and operational constraints.

Upcoming Activities
Additional analysis of feasible alternatives will be initiated in the next quarter.

2.1.7 Calaveras Reservoir Expansion

Project Background
This storage project envisions the expansion of Calaveras Reservoir to store excess RWS supplies or other source water in wet/normal years. No expansion of water rights from the local watershed is anticipated. With the Calaveras Dam Replacement project in place, Calaveras Dam impounds a capacity of 96,850 acre-feet or 31 billion gallons of water. Through an expansion, up to an additional 289,000 acre-feet or 94 billion gallons of additional storage could be realized. Calaveras Reservoir is owned and operated by the SFPUC for the benefit of RWS customers. Unlike all other regional projects under review in this program, no external partners are anticipated at this time.

Current Planning Considerations
The current planning questions include:

1) What are the conveyance alternatives, including infrastructure and operational considerations, for an expanded Calaveras Reservoir?

2) How can different water supply alternatives be integrated to maximize efficient use of expanded storage at Calaveras?

Activities this Quarter
During this quarter, the project team completed a draft report for the Calaveras Conveyance Feasibility Study, which includes a preliminary analysis of eight alternatives identified to deliver
water from upcountry to Calaveras Dam. Results were presented to the stakeholders in a workshop held in late April.

Upcoming Activities
In the next quarter, the project team will incorporate all the comments from stakeholders and will conduct another workshop prior to finalizing the report. A Request for Proposal will also be prepared to support the future phase(s) of this project.

2.2 Upcountry Projects

2.2.1 Groundwater Banking

Project Background
Groundwater banking in the Modesto Irrigation District and Turlock Irrigation District service areas could be used to provide some additional water supply to meet instream releases in dry years reducing water supply impacts to the SFPUC service area. For example, additional surface water could be provided to irrigators in wet years, which would offset the use of groundwater, thereby allowing the groundwater to remain in the basin rather than be consumptively used. The groundwater that remains in the basin can then be used in a subsequent dry year for irrigation, freeing up surface water that would have otherwise been delivered to irrigators to meet instream flow requirements.

Activities this Quarter
There is no change in status for this project over the reporting period.

Upcoming Activities
Feasibility study of this option is included in the proposed Tuolumne River Voluntary Agreement. Progress on this potential water supply option will depend on the negotiations of the Voluntary Agreement.

2.2.2 Inter-Basin Collaborations

Project Background
Inter-Basin Collaborations could provide net water supply benefits in dry years by sharing responsibility for instream flows in the San Joaquin River and the Delta more broadly among several tributary reservoir systems. One mechanism by which this could be accomplished would be to establish a partnership between interests on the Tuolumne River and those on the Stanislaus River, which would allow responsibility for streamflow to be assigned variably based on the annual hydrology.

Activities this Quarter
No new development has occurred during this reporting period.
Upcoming Activities
As is the case with Groundwater Banking, feasibility of this option is included in the proposed Tuolumne River Voluntary Agreement.

2.2.3 Dry Year Transfers

Project Background
During the planning and implementation of the Phased Water System Improvement Program, the SFPUC pursued a long-term agreement to transfer 2 mgd from MID in dry years only. The negotiations were terminated in 2012. Subsequently, the SFPUC has initiated discussions with Oakdale Irrigation District to secure a similar dry year transfer.

Activities this Quarter
No new water transfer developments occurred during this reporting period.

Upcoming Activities
While no transfer has been secured to date, the SFPUC continues to engage in discussions with partners to explore potential transfer opportunities on the Tuolumne River and throughout the San Joaquin Valley.

2.3 Local Projects

(ALL CURRENT AND UPCOMING ACTIVITIES UPDATED)

This section describes new alternative water supply projects in SFPUC’s retail service area that can offset future retail demands from the RWS. This list supplements the SFPUC’s robust efforts in conservation, water recycling, onsite water reuse, and local and regional groundwater that have been underway for decades. Ongoing efforts are described in Section 3.5.1.

2.3.1 San Francisco Purified Water

Project Background (UPDATED)
The San Francisco Purified Water Project is a concept that envisions providing a new, local drinking water supply in San Francisco. In 2020, the SFPUC successfully completed PureWaterSF, a small-scale research and demonstration potable reuse project at its headquarters. While more research and investigation are needed before a project is developed, there is a statewide push to increase reuse and reduce wastewater discharges. With the absence of large remaining non-potable applications, San Francisco is evaluating the maximum potential for recycling water for drinking or producing purified water that can be blended at one or more of San Francisco's drinking water reservoirs consistent with draft regulations that are being developed by the State Water Resources Control Board.
The proposed project would also provide a tertiary recycled water supply of 1.2 mgd to meet the demands of dual-plumbed\(^5\) buildings in San Francisco that do not currently have a non-potable water supply source (previously reported as the Satellite Recycled Water Project). The tertiary recycled water would serve as an appropriate water supply source for non-potable irrigation, as well as commercial and industrial uses not addressed by the Non-Potable Ordinance.

Activities this Quarter
This quarter, the SFPUC shared the completed study on PureWaterSF with the Board of Supervisors, the Citizens Advisory Committee, regional purified water project partners, and SFPUC staff. Staff also began further evaluating scenarios included in the feasibility study to determine future needs and recommendations.

Upcoming Activities
The SFPUC is moving forward with project planning. In the coming months, staff will develop a schedule, screen potential sites for treatment, and initiate outreach planning.

2.3.2 Innovations Program

Project Background
This program supports development of new technologies and initiatives to demonstrate the feasibility of atmospheric water generation technology, heat recovery in non-potable systems, expanded leak detection, and breweries treating process water for reuse. Included in the Innovations Program are demonstration of new technologies and grant funds to support partnership opportunities. Examples of projects within the Innovations Program include a grant program to treat process water in breweries and grants to support onsite reuse projects with heat recovery systems. San Francisco’s Onsite Water Reuse Program allows for the collection, treatment, and use of alternate water sources for non-potable applications in individual buildings and at the district-scale. The onsite water reuse systems under the Non-Potable Ordinance apply to new, large development projects in San Francisco. The SFPUC is also pursuing a prospective project to expand leak detection and a project to test atmospheric water generation technology.

Activities this Quarter
The SFPUC continued to monitor the performance of the atmospheric water generation panels and worked with the contractor and project partners to develop signage to improve communication and outreach about the project and SFPUC’s innovative leadership.

\(^5\) Dual-plumbing is a plumbing system with two sets of pipes. One set of pipes is designed and used for the transmission of recycled water within buildings and structures, including lateral supply pipelines, and which is separate from the existing set of pipes or any potable water distribution system that complies with all material and construction specifications contained in City codes and other applicable State and Federal laws. There are several dual-plumbed buildings in San Francisco that installed the plumbing to comply with the Recycled Water Ordinance.
The SFPUC continues to use several technologies and approaches to detect potential leaks in its system. This includes an ongoing pilot of the Echologics acoustic leak detection platform.

The first brewery process water reuse system at Anchor Brewing Company in San Francisco began operating its system. Anchor Brewing is treating and reusing brewery process water onsite for bottling rinsing, floor washdown, and other process water uses. The new water reuse system is treating 100 percent of process water at Anchor Brewing, with a capacity to recycle up to 20 million gallons of water annually – the yearly equivalent of roughly 1,300 San Francisco residents.

Upcoming Activities
The SFPUC will continue developing projects to demonstrate the potential for water savings and supply with innovations in the coming quarter.

2.4 Project Summaries

In the following pages, single page summaries of each project are provided, along with current planning and development schedules and additional details of each project included in this program.
Summary of Alternative Water Supply Program

Project Description

As the SFPUC plans to 1) meet environmental flow obligations requirements and projected customer obligations demands for existing customers; 2) evaluate serving new permanent customers and providing additional supply for existing customers; and 3) prepare for future climate effects and other uncertainties through the 2045 water supply planning horizon, there is a need to look beyond current surface water supplies and operations of the San Francisco Regional Water System (RWS) and local groundwater sources. The Alternative Water Supply (AWS) Program was established to evaluate new and diverse “alternative” water supply options such as expanding storage, groundwater banking, transfers, purified water (potable reuse), desalination, and technological innovations that can increase supply.

While the AWS projects support the SFPUC’s goal of balancing meeting future water needs, they are not all necessarily centered around the surface water supply source. The projects that can provide direct water supply benefits and are currently being evaluated include four regional water supply projects, two regional storage expansion projects, and two local water supply projects in San Francisco.

General Program Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>10-Yr CIP Budget Allocation</th>
<th>Current FY ’21 Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential to improve supply reliability</td>
<td>Varies</td>
<td>Regional $404M</td>
<td>$48M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local $10.3M</td>
<td>$6.3M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Project Costs</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Est. Capital Cost:</td>
<td>TBD</td>
</tr>
<tr>
<td>Est. Annual O&M:</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Programmatic Schedule

Proposed Schedule of Projects

- Daly City Recycled Water Expansion
- Conveyance Alternatives
- Brackish Water Desalination
- ACWD-USD Purified Water
- Crystal Springs Purified Water (PREP)
- San Francisco Purified Water
- Los Vaqueros Reservoir Expansion
- Calaveras Reservoir Expansion

Current Status

<table>
<thead>
<tr>
<th>Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Feasibility studies underway to identify and analyze project concepts</td>
</tr>
</tbody>
</table>

Risks and Uncertainties

| • Determining incremental water supply benefits |
| • Integrating new supplies with existing supplies |

Benefits

| • Potential to improve water supply reliability |

Updated as of 9/1/2022
Daly City Recycled Water Expansion

Project Description

This project can make an additional 0.7 mgd available in the South Westside Basin for drought supply. The project is envisioned to serve 13 cemeteries and other smaller irrigation customers with an average annual recycled water supply of 1.25 mgd, offsetting existing groundwater pumping from the South Westside Basin. This will free up groundwater, enhancing the reliability of the Basin. The project has been a regional partnership between the SFPUC, Daly City, and the California Water Service Company (Cal Water), in coordination with the Town of Colma and the irrigation customers who are located largely within Cal Water’s service area. As a private water utility, Cal Water’s participation in the project is subject to approval by the California Public Utilities Commission (CPUC). SFPUC customers will benefit from the increased reliability of the South Westside Basin for additional drinking water supply during droughts. In this way, this project supports the Groundwater Storage and Recovery (GSR) Project, which is under construction.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7 MGD</td>
<td>Drought and All Years</td>
<td>Recycled Water / Groundwater Offset</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

- Est. Capital Cost: $85.0M
- Est. Annual O&M: $2.0M

SFPUC Budget Information

- 10-Yr CIP Budget Allocation: $83.0M
- Current Allocation: $10.0M

Institutional Complexity

- SFPUC Only
- Multi-Party Partnership

Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>2010</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current Status

Planning

18-Month Outlook

- Identify Project ownership and cost structure among Partners (SFPUC, Daly City, Cal Water)
- Develop Term Sheet for project
- Outreach and communication with cemeteries and Colma

Risks and Uncertainties

- Securing customers (cemeteries and others)
- Partner buy-in and involvement
- Finalizing and procuring storage tank location
- Realizing groundwater offset benefits through GSR
- Loss of 1-2 SFPUC retail customers, dependent on negotiations with partners

Benefits

- Reducing reliance of cemeteries on groundwater pumping for irrigation will increase the reliability of the Southwest Groundwater Basin for drinking water supply
- Recycled water supply may be available for additional customers (to be identified)
- Diversifying water supply portfolio
- Replace some potable water used for irrigation with recycled water (0.05 mgd)
SFPUC-Alameda County Water District - Union Sanitary District Purified Water Partnership

Project Description
This project will provide a new purified water supply utilizing Union Sanitary District (USD)’s treated wastewater and further treating it through a multi-barrier advanced treatment process to meet or exceed drinking water standards. While the potential volume of supply will be determined through a feasibility evaluation, prior studies indicate the potential for at least 4 mgd of new supply. Purified water produced at USD could be transmitted to the Quarry Lakes Groundwater Recharge Area to supplement recharge into the Niles Cone Groundwater Basin or for other uses in Alameda County Water District’s (ACWD’s) service area. With the additional water supply to ACWD, an in lieu exchange with the SFPUC would result in more water left in the SFPUC’s Regional Water System. Additional water supply could also be directly transmitted to the SFPUC through a new intertie between ACWD and SFPUC. A range of scenarios considering treatment capacity, distribution potential and feasibility are being considered through an evaluation between the three partner agencies.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>All Years</td>
<td>Purified Water</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

SFPUC Budget Information

10-YR CIP Budget Allocation: $26.0M | Current Allocation: $3.8M

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
</table>

Current Status
Planning

18-Month Outlook
• Develop and analyze the two selected alternatives

Risks and Uncertainties
• Uncertainty of planned capital improvements at wastewater treatment plant may affect purified water treatment requirements
• Potential water quality change to Quarry Lakes

Benefits
• Leverages existing facilities to provide water supply

Project Partners
Union Sanitary District (USD), Alameda County Water District (ACWD) and SFPUC

SFPUC Project Manager
YinLan Zhang

Institutional Complexity

Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.
Crystal Springs Purified Water

Project Description

The Crystal Springs Purified Water Project could provide 6-12 mgd of water supply through a combination of reservoir water augmentation at Crystal Springs Reservoir, which is a facility of the RWS, and direct potable water reuse through raw water augmentation or treated water augmentation to partner agencies. Treated wastewater from Silicon Valley Clean Water and/or the City of San Mateo would be conveyed to an advanced water treatment plant to produce purified water that meets state and federal drinking water quality standards. The purified water would then be delivered via pipelines to Crystal Springs Reservoir and directly to water purveyors on the Peninsula. Purified water that goes to Crystal Springs Reservoir would be blended with regional surface water supplies and treated again at Harry Tracy Water Treatment Plant. Purified water that does not go to Crystal Springs would be added directly to the supply of water retailers on the Peninsula. In addition to the SFPUC and the wastewater agencies, Cal Water, Redwood City, Mid-Peninsula Water District and BAWSCA are also participating in the project. Initial feasibility analyses have been completed. Additional planning and preliminary design, including analysis of feasible operational scenarios, impacts to RWS operations, the evaluation of Direct Potable Reuse (DPR) alternatives, as well as treatment train options, are needed to further develop the project and evaluate its impacts.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>All Years</td>
<td>Purified Water</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

- **Est. Capital Cost:** TBD
- **Est. Annual O&M:** TBD

SFPUC Budget Information

- **10-Yr CIP Budget Allocation:** $29.0M
- **Current Allocation:** $4.7M

Estimated Project Schedule (Not a Baseline Schedule)

![Project Schedule Diagram](image)

Current Status

- **Planning**
- **2015:**
 - Planning

Risks and Uncertainties

- Operational and water quality challenges in Crystal Springs Reservoir
- Construction challenges in parts of distribution area
- Water supply during non-drought years would impact operations and storage availability in the Regional Water System

Benefits

- Reduces Bay discharges
- Provides a new drought-resistant water supply

Project Partners

Silicon Valley Clean Water, City of San Mateo, Cal Water, Redwood City, Mid-Peninsula Water District, Bay Area Water Supply and Conservation Agency (BAWSCA) and SFPUC

SFPUC Project Manager

YinLan Zhang

Institutional Complexity

- SFPUC
 - Only
- Multi-Party Partnership

Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.

Updated as of 9/1/2022
South Bay Purified Water

Project Description
This is a joint purified water project between the SFPUC, City of San Jose, and City of Santa Clara that could provide all-year supply to the cities of San Jose and Santa Clara and dry-year supply to the Regional Water System (RWS). Project sizes are still being evaluated, but an initial concept that is being explored is a 10-mgd advanced water treatment facility (i.e., purified water facility) that would use source water from the San Jose-Santa Clara Regional Wastewater Facility and operate at 6.5-mgd capacity during wet and normal years. During dry years, the facility would ramp up to the full 10-mgd capacity. The additional 3.5 mgd of purified water produced during dry years would be fed into the RWS to increase dry year reliability.

San Jose-Santa Clara Regional Wastewater Facility

Project Partners
City of San Jose, City of Santa Clara, and SFPUC

SFPUC Project Manager
Fan Lau

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>Drought and All Years</td>
<td>Purified Water</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

|-------------------|-----|-----------------|-----|

SFPUC Budget Information

<table>
<thead>
<tr>
<th>10-Yr CIP Budget Allocation:</th>
<th>$0.0M</th>
<th>Current Allocation:</th>
<th>$0.0M</th>
</tr>
</thead>
</table>

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>Eng. Design</td>
<td>Env. Review</td>
<td>Public Outreach</td>
<td>Where We Are</td>
</tr>
</tbody>
</table>

Current Status
Conceptual; Planning

18-Month Outlook
- Conduct Feasibility Study
- Execute Cost-Share Memorandum of Agreement

Risks and Uncertainties
- Operational and water quality challenges in RWS transmission system
- Public acceptance of non-traditional water supply
- NPDES compliance related to discharge to receiving waters
- Environmental impacts to receiving waters
- Impacts of enhanced source water control

Benefits
- Provides a new drought-resistant supply to San Jose and Santa Clara
- Provides a water supply option to support San Jose’s and Santa Clara’s request for permanent status
- Provides a dry-year supply to the Regional Water System

Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.
Los Vaqueros Reservoir Expansion

Project Description

The Los Vaqueros Reservoir Expansion (LVE) Project is a storage project that will enlarge the existing reservoir located in Contra Costa County from 160,000 acre-feet to 275,000 acre-feet. The main objectives of the expansion include increasing water supply reliability for municipal, industrial and agricultural customers as well as ecosystem benefits to south-of-Delta wildlife refuges and Delta fisheries. While the existing reservoir is owned and operated by Contra Costa Water District (CCWD), the expansion will have regional benefits and will be managed by a Joint Powers Authority that will be set up prior to construction. Meanwhile, Contra Costa Water District is leading the planning, design and environmental review efforts. The LVE Project includes construction of new pipelines, upgrades to existing facilities and reoperation of some facilities. Storage in LVE can provide a dry year water supply benefit to the SFPUC’s Regional Water System (RWS). Currently, SFPUC staff are pursuing scenarios of 20,000 - 40,000 acre-feet of storage. In addition, water supply and conveyance to the RWS need to be determined before the SFPUC determines the extent of participation in the LVE project. Conveyance Alternatives, Brackish Water Desalination, and BARR simulation are planning efforts that are linked directly to this project.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>To be identified in a separate project</td>
<td>Drought and/or All Years</td>
<td>Storage</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$110M</td>
<td>TBD</td>
<td>10-Yr CIP Budget Allocation: $110.1M</td>
</tr>
</tbody>
</table>

Project Partners

Alameda County Water District (ACWD), CCWD, East Bay Municipal Utility District (EBMUD), SFPUC, Zone 7 Water Agency, and the San Luis Delta Mendota Water Authority

SFPUC Project Manager

Senobar Lanigan

Institutional Complexity

Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>Env. Review</td>
<td>Eng. Design</td>
<td>Permitting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Construction</td>
</tr>
</tbody>
</table>

Current Status

Planning; Environmental Review; Permitting

18-Month Outlook

- Project cost allocations
- Operational Details
- Service Agreements
- Initial Feasibility of water supply options
- Staff recommendations on conveyance and storage
- JPA Monthly Meetings
- Submit EPA Loan Application for $675M

Risks and Uncertainties

- Capacity and institutional constraints for conveyance to RWS
- Firm source of water supply
- Water quality risks and treatment needs, depending upon conveyance pathway

Benefits

- Provides operational flexibility, particularly in drier years
- Allows the SFPUC to manage existing supply more efficiently

Updated as of 9/1/2022
Conveyance Alternatives

Project Description
This project is dependent on the SFPUC’s participation in the Los Vaqueros Expansion Project in Contra Costa County. Through this evaluation, SFPUC staff will evaluate the potential mechanism(s) available to transfer or exchange water for the benefit of SFPUC Regional Water System (RWS) customers. The volume of water that can be transferred would be the same volume of water that is stored by SFPUC in Los Vaqueros Reservoir Expansion Project (to be determined).

The three conveyance alternatives that will be explored as part of this project using the South Bay Aqueduct (SBA) include 1) a transfer with ACWD; 2) a transfer with Valley Water; and 3) delivery to San Antonio Reservoir. Partners will include the SBA Contractors (ACWD, Zone 7 Water Agency, Valley Water), particularly any agency identified as a feasible transfer partner. Of the three options along the SBA, only one (delivery to San Antonio) provides a water supply directly into the RWS. Any conveyance option utilizing the SBA will likely include pipeline improvements and may also include pretreatment and/or pumping, depending on the option pursued. Reliability of the SBA is critical to the viability of these options.

In addition to the SBA, SFPUC is also considering other alternatives, including the potential for a new intertie with the East Bay Municipal Utility District (EBMUD).

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent on water supply</td>
<td>All Years</td>
<td>Transfer</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

| Est. Capital Cost: | TBD |
| Est. Annual O&M: | TBD |

SFPUC Budget Information

| 10-Yr CIP Budget Allocation: | $31.0M |
| Current Allocation: | $1.5M |

Estimated Project Schedule (Not a Baseline Schedule)

2019	2024	2029
Planning	Eng. Design	Construction
Env. Review	Permitting	
Public Outreach		

Where We Are

Current Status

Planning

18-Month Outlook

- Identify preferred conveyance and delivery alternative and plan next steps
- Continue engagement with the Department of Water Resources on conveyance agreement

Risks and Uncertainties

- Institutional arrangements / willingness of stakeholders
- Treatment and pre-treatment in some cases
- WQ challenges associated with new source of supply

Benefits

- Leverages existing infrastructure
- For exchanges (with ACWD and VW) treatment will be delegated to a partner familiar with SBA as a source

Project Partners

SFPUC and BAWSCA working with SBA Contractors:
Alameda County Water District (ACWD), Zone 7 Water Agency, and Valley Water

SFPUC Project Manager

Senobar Lanigan

South Bay Aqueduct

Institutional Complexity

SFPUC Only

Multi-Party Partnership

Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.
Bay Area Regional Reliability (BARR) Shared Water Access Program (SWAP)

Project Description

In 2016, eight of the Bay Area’s largest water utilities formed a partnership to explore opportunities to transfer and exchange water across service areas to better serve customers, particularly in times of droughts and emergencies. The partnership is intended to leverage the existing infrastructure and interconnections that exist between the partnering agencies. The Bay Area Regional Reliability (BARR) Partnership includes the following agencies: 1) Alameda County Water District (ACWD), 2) Bay Area Water Supply & Conservation Agency (BAWSCA), 3) Contra Costa Water District (CCWD), 4) East Bay Municipal Utility District (EBMUD), 5) Marin Municipal Water District (MMWD), 6) the San Francisco Public Utilities Commission (SFPUC), 7) Valley Water (formerly Santa Clara Valley Water District and 8) Zone 7 Water Agency.

The BARR Partnership has received two grants from the US Bureau of Reclamation to support collaborative drought planning. A Drought Contingency Plan was completed in 2017. Currently, the BARR Partnership is completing a Shared Water Access Program (SWAP) to help facilitate future transfers and exchanges that can be implemented more readily in times of drought or emergency by BARR partners. The SFPUC participated in a water transfer simulation with ACWD and BAWSCA that would simulate the use of the South Bay Aqueduct (SBA) for an exchange with ACWD and a transfer into San Antonio Reservoir.

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent on water supply</td>
<td>Drought Years</td>
<td>Conveyance/Transfer</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Project Cost</th>
<th>Institutional Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Est. Capital Cost: TBD</td>
<td>SFPUC Only Multi-Party Partnership</td>
</tr>
<tr>
<td>Est. Annual O&M: TBD</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFPUC and BAWSCA working with SBA Contractors: Alameda County Water District (ACWD), Zone 7 Water Agency, and Valley Water</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SFPUC Budget Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIP Budget Allocation: $0.3M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated Project Schedule (Not a Baseline Schedule)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019 - 2024</td>
</tr>
<tr>
<td>BARR Partnership Drought Planning</td>
</tr>
<tr>
<td>Drought Transfer / Simulation</td>
</tr>
<tr>
<td>Where We Are</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current Status</th>
<th>Risks and Uncertainties</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual</td>
<td>• Institutional arrangements / willingness of stakeholders</td>
<td>• Encourages regional water supply planning and collaboration</td>
</tr>
<tr>
<td>18-Month Outlook</td>
<td>• Exchange limitations caused by change in water quality parameters of concern</td>
<td>• Leverages existing infrastructure</td>
</tr>
<tr>
<td>• Report to the U.S. Bureau of Reclamation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Evaluate institutional implications of exchange agreements</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Updated as of 9/1/2022
Bay Area Brackish Water Desalination (Regional Desalination)

Project Description

The Bay Area Brackish Water Desalination (Regional Desalination) Project is a partnership between Contra Costa Water District (CCWD), SFPUC, Valley Water, and Zone 7 Water Agency. East Bay Municipal Utility District (EBMUD) and the Alameda County Water District (ACWD) may also participate. The project could provide 10-20 mgd of new drinking water supply to the region by treating brackish water from CCWD’s existing Mallard Slough intake in Contra Costa County. The project relies primarily on available capacity in an extensive network of existing pipelines and interties that already connect the agencies, as well as existing wastewater outfalls and pump stations. The new infrastructure needed for this project includes a treatment facility and upgrades to existing facilities. Zone 7 Water Agency would likely need a new intertie with EBMUD. Depending on the conveyance system used, additional pretreatment and/or facility upgrades may be needed.

Early planning studies conducted between 2003-2015 assumed that the project would provide a steady water supply of 9 mgd to the SFPUC in all years; however, the SFPUC is currently seeking drought year supply via storage in Los Vaqueros Reservoir from this project. The final volume share will be subject to negotiation with other partners. The SFPUC would not directly receive desalinated water, but would take delivery of water through a series of transfers and exchanges.

Project Partners

Contra Costa Water District (CCWD), East Bay Municipal Utility District (EBMUD), Valley Water, Zone 7 Water Agency and SFPUC

SFPUC Project Manager

Manisha Kothari

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>Dry Years (with storage) and/or All Years</td>
<td>Desalination / Transfers</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

SFPUC Budget Information

| 10-Yr CIP Budget Allocation: | $8.0M | Current Allocation: | $3.5M |

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td></td>
<td>Planning (resumed)</td>
<td>Eng. Design</td>
<td>Env. Review</td>
<td>Permitting</td>
</tr>
<tr>
<td>Outreach</td>
<td></td>
<td>Public Outreach (resumed)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current Status

Planning

18-Month Outlook

• Feasibility analysis to be included as part of separate alternative water supply study supporting Los Vaqueros Expansion
• Supply potential and delivery mechanism to be worked out among partners

Risks and Uncertainties

• Some impacts to sensitive fish may be unavoidable
• Water rights and permitting likely to be challenging
• Conveyance options are limited to transfer water to Regional Water System
• Exchange with CCWD’s CVP supply is the only mechanism to move water into LVE

Benefits

• Availability during dry years
• Lower GHG emissions than seawater desalination
• Leverages existing infrastructure
• Storage option in Los Vaqueros provide dry year benefits

Updated as of 9/1/2022

38
Calaveras Reservoir Expansion

Project Description

This storage project envisions the expansion of Calaveras Reservoir to store excess Regional Water System (RWS) supplies or other source water in wet/normal years. No expansion of water rights from the local watershed is anticipated. With the Calaveras Dam Replacement project in place, Calaveras Dam holds a capacity of 96,850 acre-feet, or 31 billion gallons of water. Through an expansion, up to an additional 289,000 acre-feet, or 94 billion gallons of storage could be realized. Calaveras Reservoir is owned and operated by the SFPUC for the benefit of RWS customers. No external partners are anticipated at this time. The expansion of Calaveras Reservoir would provide storage for additional water that can be available in all water year types. The proposed project would include raising the dam, increasing the capacity of the outlet structures and the spillway, and the addition of any transmission and pumping needed to bring water to Calaveras Reservoir. Constraints including water availability and conveyance will need to be evaluated.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Drought Years and/or All Years</td>
<td>Local Storage</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

<table>
<thead>
<tr>
<th>Est. Capital Cost</th>
<th>Est. Annual O&M</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

SFPUC Budget Information

<table>
<thead>
<tr>
<th>10-Yr CIP Budget Allocation</th>
<th>Current Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7.5M</td>
<td>$5.0M</td>
</tr>
</tbody>
</table>

Institutional Complexity

SFPUC Only

Benefits

- Provides operational flexibility, particularly in dry years
- Increases storage capacity in the SFPUC’s largest reservoir
- Increases utilization of Tuolumne River and other wet/normal year supply

Risks and Uncertainties

- Availability of additional water from the Tuolumne River to divert to storage

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning</td>
<td>Env. Review</td>
<td>Permitting</td>
<td>Construction</td>
<td>Public Outreach</td>
</tr>
<tr>
<td>Where We Are</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current Status

Planning

18-Month Outlook

- Consultant team identifying and evaluating conveyance alternatives

Updated as of 9/1/2022
Groundwater Banking

Project Description

Groundwater banking in the Modesto Irrigation District and Turlock Irrigation District (the Districts) service areas could be used to provide some additional water supply to meet instream releases in dry years reducing water supply impacts to the SFPUC service area. For example, additional surface water could be provided to irrigators in wet years, which would off-set the use of groundwater, thereby allowing the groundwater to remain in the basin rather than be consumptively used. The groundwater that remains in the basin can then be used in a subsequent dry year for irrigation, subsequently freeing up surface water that would have otherwise been delivered to irrigators to meet instream flow requirements.

Feasibility study of this option is included in the proposed Tuolumne River Voluntary Agreement.

Project Partners

MID and TID
Groundwater users within the MID/TID service areas that also receive surface water deliveries from the Districts

Ellen Levin and Michael Carlin

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>Drought Years</td>
<td>Groundwater / Storage</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

<table>
<thead>
<tr>
<th>Est. Capital Cost:</th>
<th>Est. Annual O&M:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

SFPUC Budget Information

<table>
<thead>
<tr>
<th>CIP Budget Allocation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.0M</td>
</tr>
</tbody>
</table>

Estimated Project Schedule (Not a Baseline Schedule)

2019

<table>
<thead>
<tr>
<th>Planning</th>
</tr>
</thead>
</table>

2024

<table>
<thead>
<tr>
<th>Where We Are</th>
</tr>
</thead>
</table>

Institutional Complexity

SFPUC Only
Multi-Party Partnership

Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.

Current Status

Conceptual

18-Month Outlook

- Evaluate next step based on negotiations of Tuolumne River Voluntary Agreement

Risks and Uncertainties

- Institutional challenges relating to water rights and basin management

Benefits

- Additional storage, with availability in dry years

Updated as of 9/1/2022
Inter Basin Collaborations

Project Description

Inter-Basin Collaborations could provide net water supply benefits in dry years by sharing responsibility for in-stream flows in the San Joaquin River and Delta more broadly among several tributary reservoir systems. One mechanism by which this could be accomplished would be to establish a partnership between interests on the Tuolumne River and those on the Stanislaus River, which would allow responsibility for streamflow to be assigned variably based on the annual hydrology. The Tuolumne system tends to spill more excess flow in wetter years than the Stanislaus, and this excess flow could be shaped and credited to meet Stanislaus system requirements, while New Melones Reservoir in the Stanislaus system is refilling. Then the stored water could be partially used to provide required streamflow to meet Stanislaus and Tuolumne requirements in future dry years.

Inter-Basin Collaborations could also include groundwater banking, utilizing the connections between the OID and MID surface water service areas.

Feasibility study of this option is included in the proposed Tuolumne River Voluntary Agreement. Any collaboration would need to protect the interests of all participants.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>Varies</td>
<td>Storage or Exchanges</td>
<td>Regional</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Total Project Cost

<table>
<thead>
<tr>
<th>Est. Capital Cost:</th>
<th>TBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Est. Annual O&M:</td>
<td>TBD</td>
</tr>
</tbody>
</table>

SFPUC Budget Information

| CIP Budget Allocation: | N/A |

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current Status

Conceptual

18-Month Outlook

- Meeting with other parties to be scheduled pursuant to Voluntary Agreement negotiations

Risks and Uncertainties

- Collaboration will require agreements and operational changes among many public and private parties

Benefits

- Better management of basins can lead to greater regional water supply availability
- Water supply and environmental benefits

Updated as of 9/1/2022
In 2008, the SFPUC Commission adopted the Water System Improvement Program (WSIP) Phased Variant to ensure that the SFPUC could continue to reliably meet the projected needs of its customers through 2030. One element of WSIP Phased Variant was a drought year water transfer. Coupled with the Regional Groundwater Storage and Recovery Project (GSR), this project was intended to ensure drought reliability in the planning horizon. The SFPUC pursued a long-term agreement to transfer 2 mgd from Modesto Irrigation District (MID) in drought years. However, the negotiations were terminated in 2012. Subsequently, SFPUC staff initiated discussions with the Oakdale Irrigation District (OID) to secure a similar drought year transfer. While no transfer has been secured to date, the SFPUC continues to pursue discussions with partners to explore potential transfer opportunities on the Tuolumne River and throughout the San Joaquin Valley.

Project Description

In 2008, the SFPUC Commission adopted the Water System Improvement Program (WSIP) Phased Variant to ensure that the SFPUC could continue to reliably meet the projected needs of its customers through 2030. One element of WSIP Phased Variant was a drought year water transfer. Coupled with the Regional Groundwater Storage and Recovery Project (GSR), this project was intended to ensure drought reliability in the planning horizon. The SFPUC pursued a long-term agreement to transfer 2 mgd from Modesto Irrigation District (MID) in drought years. However, the negotiations were terminated in 2012. Subsequently, SFPUC staff initiated discussions with the Oakdale Irrigation District (OID) to secure a similar drought year transfer. While no transfer has been secured to date, the SFPUC continues to pursue discussions with partners to explore potential transfer opportunities on the Tuolumne River and throughout the San Joaquin Valley.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>Drought Years</td>
<td>Transfer</td>
<td>Regional</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

<table>
<thead>
<tr>
<th>Est. Capital Cost:</th>
<th>TBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Est. Annual O&M:</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Institutional Complexity

- SFPUC: Only
- Multi-Party Partnership

SFPUC Project Manager

Ellen Levin and Michael Carlin

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>2008</th>
<th>2013</th>
<th>2018</th>
<th>2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current Status

- Conceptual

18-Month Outlook

- Resume discussions with Districts

Benefits

- Leverages existing supply and existing infrastructure

Risks and Uncertainties

- Institutional arrangements / willingness of stakeholders
- Availability of supply

Updated as of 9/1/2022

42
San Francisco Purified Water

Project Description

The San Francisco Purified Water Project is a concept that envisions providing new, local drinking water supply in San Francisco. The project would treat secondary effluent sourced from one or both of San Francisco's all-weather wastewater treatment plants through a multi-stage, multi-barrier advanced treatment process to produce water that meets state and federal drinking water standards. The treated water would then be blended at one or more of San Francisco's drinking water reservoirs. This treatment and distribution process is referred to as treated water augmentation, and State regulations are still under development (anticipated by 2023). The SFPUC would have no external partners in developing the project infrastructure, but close coordination with regulators, other utilities contemplating similar projects, and our communities will be very important throughout the planning and development of this project.

A building-scale research project (PureWaterSF) was completed in 2020 with grant support from the U.S. Bureau of Reclamation and the Water Research Foundation. Data revealed that the treatment processes operated as anticipated. A feasibility study has been completed identifying potential size, scale and other next steps. The project would also provide a tertiary recycled water supply of 1.2 mgd to meet the demands of dual-plumbed buildings in San Francisco that do not currently have a non-potable water supply source (previously reported as the Satellite Recycled Water Project). The SFPUC is continuing to move forward with planning and analysis for this project.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mgd</td>
<td>All Years</td>
<td>Purified Water</td>
<td>Local</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Total Project Cost

<table>
<thead>
<tr>
<th>Est. Capital Cost:</th>
<th>Est. Annual O&M:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

SFPUC Budget Information

<table>
<thead>
<tr>
<th>10-Yr CIP Budget Allocation:</th>
<th>Current Allocation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5.5M</td>
<td>$0.5M</td>
</tr>
</tbody>
</table>

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th>2015</th>
<th>2020</th>
<th>25</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
<th>2045</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>Eng. Design</td>
<td>Env. Review</td>
<td>Permitting</td>
<td>Construction</td>
<td>Where We Are</td>
<td></td>
</tr>
</tbody>
</table>

Current Status

<table>
<thead>
<tr>
<th>Research / Conceptual</th>
</tr>
</thead>
</table>

18-Month Outlook

- Evaluate siting options
- Evaluate brine discharge and permitting needs
- Evaluate treatment options
- Initiate public outreach and engagement

Risks and Uncertainties

- Regulatory framework not in place until after 2023
- Need for additional testing, analysis and study
- Public perception

Benefits

- Reduces Bay discharges
- Takes advantage of treated recycled water availability

Institutional Complexity

- SFPUC Only
- Multi-Party Partnership

Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.
Innovations Program

Project Description
This program supports development of new technologies and initiatives to demonstrate the feasibility of atmospheric water generation, heat recovery systems in non-potable systems, expanded leak detection, and breweries treating process water for reuse. Included in the Innovations Program are demonstration of new technologies and grant funds to support partnership opportunities. Examples of projects within the Innovations Program include grant funding to support the reuse of process water in breweries, and onsite reuse projects with heat recovery systems. The SFPUC is also testing leak detection technologies and will pilot the use of atmospheric water generation technology locally.

General Project Information

<table>
<thead>
<tr>
<th>Average Annual Supply</th>
<th>Availability</th>
<th>Supply Type</th>
<th>Local or Regional?</th>
<th>Capital Cost/Acre-Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varies</td>
<td>Varies</td>
<td>Local</td>
<td>Local</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Total Project Cost

<table>
<thead>
<tr>
<th>Est. Capital Cost:</th>
<th>Est. Annual O&M:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td>N/A</td>
</tr>
</tbody>
</table>

SFPUC Budget Information

| CIP Budget Allocation: | $0.5M |

Estimated Project Schedule (Not a Baseline Schedule)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning (various)</td>
<td></td>
</tr>
<tr>
<td>Pilot Testing (various)</td>
<td></td>
</tr>
</tbody>
</table>

Current Status

- Planning; Pilot Testing

Risks and Uncertainties

- Individual projects may be small, making them costly

Benefits

- Identifies new technology opportunities to increase efficiency and water availability

Institutional Complexity

<table>
<thead>
<tr>
<th>Institutional Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFPUC Only</td>
</tr>
<tr>
<td>Multi-Party Partnership</td>
</tr>
</tbody>
</table>

Institutional complexity is a relative measure that takes into account project service area, project facilities ownership, number of project partners, cost share, and whether SFPUC is construction and design lead.

Project Partners

Various

SFPUC Project Manager

Paula Kehoe

Updated as of 9/1/2022
Section 3. Program Fundamentals

3.1 Introduction

This section includes background information on the Alternative Water Supply (AWS) Program and is intended to serve as a program reference. It includes information on how the AWS Program was established, program goals, planning priorities, program schedules, and information on resources for program administration such as staffing, funding, and contracting. Much of the information included in this section will be the same from one quarterly report to the next. However, new information may occasionally be added to the section, and useful information presented in the upfront sections of previous quarterly reports may be moved into this section from time to time. When new information is added, or if significant updates are made to previously included background information, the sections will be marked as “UPDATED”.

3.2 Purpose of the Program

As the SFPUC plans to 1) meet environmental flow requirements and projected obligations for existing customers; 2) evaluate serving new permanent customers and providing additional supply for existing customers; and 3) prepare for future climate effects and other uncertainties through the 2045 water supply planning horizon, there is a need to look beyond current surface water supplies and operations of the SFPUC’s RWS and local groundwater sources. The AWS Program was established to evaluate new and diverse “alternative” water supply options such as expanding storage, groundwater banking, transfers, purified water (potable reuse), desalination, and technological innovations.

The AWS Program includes four regional water supply projects, two regional storage expansion projects, and two local water supply projects in San Francisco. In addition to regional and local water supply projects, the AWS Program includes evaluating and supporting existing infrastructure and pursuing complementary infrastructure options to meet future water supply needs. Included in this category are one evaluation of conveyance to deliver new supplies (under the LVE Project), one simulation of a transfer that can provide insight into the feasibility of a new water supply and exchange opportunities (BARR SWAP), and one project to explore new ways of increasing supply or offsetting demand increases in San Francisco (San Francisco Purified and Recycled Water). Studies are underway to evaluate all these projects. Finally, there are also three additional water supply projects that would require partnerships with Irrigation Districts on the Tuolumne and/or Stanislaus Rivers (referred to here as upcountry projects). These projects may be analyzed in the coming months, in conjunction with negotiation efforts with the State on the Bay Delta Water Quality Control Plan (Bay-Delta Plan). The upcountry projects are described in these quarterly reports, and more information will be provided on their development as it becomes available.
The AWS projects are at varied stages of planning and significant uncertainties about cost, volume and timing of supply availability remain. All the projects under consideration will require significant capital investments and ongoing operations and maintenance support. Storage projects can provide significant water supply volume and can be operated to maximize dry-year deliveries when the SFPUC’s anticipated needs are greatest, but they require water supply. Desalination and potable reuse projects offer supplies in the range of 5-12 mgd each, but will likely have significant permitting, water rights and other regulatory considerations. They are also more difficult to operate intermittently for dry-year supply. The lowest-cost projects being considered will likely be the non-potable supply projects, but non-potable demands are increasingly limited, particularly in San Francisco. The tradeoffs associated with projects and other technical, institutional, operational, and financial considerations will continue to be studied and reported on through the planning phase of project development for the AWS projects.

The relative volume and cost of the alternative water supply projects are shown in Figure 4 below. Purple dots represent non-potable supply projects, blue dots represent potable supply projects, and yellow dots represent storage projects.

Figure 4. Relative Volume and Cost of Alternative Water Supply Projects
3.3 Planning Needs, Priorities and Service Objectives

The need to pursue the various alternative water supply options stems from the significant water supply needs that the SFPUC faces within the planning horizon and because traditional supplies are increasingly limited. While these needs will continue to evolve over time, the adaptive planning approach under the AWS Program is focused on being able to explore and plan a diverse set of water supply options to meet needs when they arise while continuing to provide reliable and sustainable water supply to all of the SFPUC’s retail and wholesale customers.

Among the water supply needs before the SFPUC, the most significant is represented by the need to make up for new instream flow requirements on the Tuolumne River. In December of 2018, the State Water Resources Control Board (State Board) adopted amendments to the Bay-Delta Plan. For the SFPUC, the effect of this action is a requirement to leave 40% of unimpaired flows in the Tuolumne River to achieve fishery improvements in the Bay-Delta system. SFPUC staff determined that the impact of this new flow requirement in the Tuolumne River would be a reduction in available water supplies by approximately 93 mgd during dry years at the current contract levels of demand.

The SFPUC is pursuing litigation against the State Board and is simultaneously seeking a compromise solution through a Voluntary Agreement with the State of California. In the meantime, water supply projects take years and even decades to plan and implement. Complexities of implementing alternative water supply projects can require even longer lead times for planning than traditional water supply projects. Thus, there is an urgency to plan new water supply opportunities that provide dry-year reliability to continue meeting the highest priority needs and deliver reliable service.

In the AWS planning framework, water supply needs will be met in the order of priority. These planning priorities, which were first articulated for the Commission in August 2016, have been slightly modified over time and are expressed as follows:

1. Offset instream flow needs and meet regulatory requirements (obligatory)
2. Meet existing obligations to existing permanent customers (obligatory)
3. Make current interruptible customers permanent (policy decision)
4. Meet increased demands of existing and interruptible customers (policy decision)

In conjunction with these planning priorities, the SFPUC considers the level of service (LOS) Goals and Objectives related to water supply and sustainability when planning for new water supply opportunities. The key LOS Goals and Objectives relevant to AWS planning are as follows:

- Meet dry-year delivery needs while limiting rationing to a maximum 20 percent system-wide reduction in water service during extended droughts
• Diversify water supply options during non-drought and drought periods
• Improve use of new water sources and drought management, including groundwater, recycled water, conservation, and transfers
• Meet, at a minimum, all current and anticipated legal requirements for protection of fish and wildlife habitat
• Provide operational flexibility (although this LOS Goal was not intended explicitly for the addition of new supplies, it is applicable here)

Together, the planning priorities and LOS Goals and Objectives provide a lens to consider the water supply options and opportunities to meet the foreseeable water supply needs.

3.3.1 Planning Objectives (UPDATED)

Consistent with the SFPUC’s LOS Goals and Objectives, the AWS Program aims to plan for and develop new capital projects that can ensure the delivery of reliable water service to its customers throughout the planning horizon. Maintaining reliable water service includes balancing water demands with supply availability, and it also includes having the necessary treatment, conveyance, storage, and distribution infrastructure to support water supply deliveries.

The SFPUC has contractual obligations to provide 184 mgd (Supply Assurance) to Wholesale Customers. Similarly, the SFPUC provides 81 mgd to retail customers. Together, this represents 265 mgd of water supply delivery obligations. San Jose and Santa Clara, interruptible customers of the SFPUC, have requested a minimum permanent supply of 9 mgd and up to 15.5 mgd of dedicated supply. The Commission will have to make a policy decision by 2028 on whether to provide this new supply assurance. For planning purposes, the AWS Program includes 9 mgd as a potential future obligation for San Jose and Santa Clara, enabling the Commission to make this commitment in the future.

For the SFPUC, water demand constitutes the retail and wholesale customer demand for water provided through the RWS. The SFPUC monitors water delivered to the customers in San Francisco on a regular basis. In the wholesale service area, the actual and projected RWS purchases and total water demand for the 26 Wholesale Customers is reported by BAWSCA on an annual basis. Figure 5 below shows the current and potential future obligations, as well as demand projections consistent with the SFPUC’s 2020 Urban Water Management Plan.

In March 2022, BAWSCA published the FY2020-21 Annual Survey that reflects the Urban Water Management Plans and other planning conducted by the Wholesale Customers. The FY2020-21 Annual Survey projects higher demand for water provided through the RWS or RWS purchases

6 The Bay Area Water Supply and Conservation Agency (BAWSCA) represents the interests of 26 of the SFPUC’s wholesale customers (not including Cordilleras Mutual Water Company and Groveland Community Services District), generally referred to collectively as the Wholesale Customers.
(172.8 mgd) for 2045, than those shown in the previous AWS Quarterly Reports (162.7 mgd). The increase in the projections reflects the higher projected RWS purchases for several Wholesale Customers due to reasons such as reduced reliance on other water supply sources and increase in water demand in their individual service areas.

Figure 5. SFPUC’s Water Supply Obligations and Projected Demands

Meanwhile, other uncertainties remain on the supply side of the equation. Based on the SFPUC’s system modeling, the RWS would be able to deliver 257 mgd in 2045 under planned drought conditions and current water supply policies, including rationing. Implementation of the Bay-Delta Plan, as adopted, would reduce supply availability during droughts by 93 mgd. Changes in precipitation associated with climate change, new permitting requirements and regulations, and future curtailments are additional factors that can affect supply availability within the planning horizon. These supply-side uncertainties can also trigger the exploration of new water supplies.

3.3.2 Planning Approach: Plan for Obligations, Build for Demands (UPDATED)

Recognizing that through the 2045 planning horizon 1) projected demands are lower than the SFPUC’s obligations and 2) there are uncertainties around supply availability, the AWS team is developing a stepwise planning approach to meet customer obligations and implement new projects. It is important to note that while the SFPUC must prepare to meet its obligations by
identifying feasible water supply and associated capital improvement projects, implementation of these large infrastructure projects may be deferred until the need is more imminent for the SFPUC to meet delivery needs. Through the planning process, key decision points for each project must be identified with an understanding of its own risks and benefits, so that the SFPUC can make informed decisions at multiple points within the project on whether and how to proceed. With this adaptive approach, the SFPUC can minimize the financial and operational risks of overcommitting or having insufficient water supplies to fill the gap between demand and supply as both continue to evolve.

Developed in line with this framework, the focus of the current planning effort and the AWS Program is on meeting water supply needs that are evaluated based on the contractual obligations, projected demands, and the available supplies. With the variability in the obligations and projected demands, it is important for the AWS team to simultaneously, aggressively plan for obligations and advance those projects that will ensure that projected demands are met. The matrix below shows the water supply needs under different planning scenarios.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Obligations for Permanent Wholesale Customers, Anticipated Obligations for Interruptible Customers, and Retail Allocation</td>
<td>274</td>
<td>Water supply available with no new instream flow requirements</td>
<td>257</td>
</tr>
<tr>
<td>Water Supply available with implementation of the Bay-Delta Plan and rationing</td>
<td></td>
<td></td>
<td>152</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planning for Demands (2045) Drought Year</th>
<th>Demands (mgd)</th>
<th>Available Water Supply (mgd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projected Demands in the Retail and Wholesale Service Areas accounting for conservation, and offsets from onsite water recycling and non-SFPUC System supplies</td>
<td>246</td>
<td>Water supply available with no new instream flow requirements</td>
</tr>
<tr>
<td>Water Supply available with implementation of the Bay-Delta Plan and rationing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As shown in the matrix, the water demands account for the demand offsets or the reduction resulting from conserving water and implementation of onsite water recycling programs in San Francisco. The SFPUC provides comprehensive water conservation program services open to all residents and businesses in San Francisco by way of the following programs:

- The Innovations Program (described in Section 2) promotes exploration of new ways to conserve and reuse water, recover resources, and diversify water supplies.
• The Local Water Program provides conservation assistance, promotes recycled water to meet San Francisco’s most significant irrigation needs, mandates non-potable supplies for toilet flushing and irrigation in new developments and develops local groundwater to enhance the City’s drinking water supply sustainably now and into the future.

• The Onsite Water Reuse Program allows for the collection, treatment, and use of alternate water sources for non-potable applications in individual buildings and at the district-scale. Under the Non-potable Ordinance, onsite water reuse systems are required for new, large development projects in San Francisco. Recently amended in 2021, Article 12C of the San Francisco Health Code, the ordinance requires new development projects of 100,000 gross square feet or more to install and operate an onsite water reuse system.

The SFPUC has implemented conservation programs to minimize both indoor and outdoor retail water demands, resulting in a per capita residential water consumption rate of 42 gallons per person per day, a rate that is half the statewide average. Although not a core part of AWS planning, the demand offsets are accounted for and updated as part of AWS planning efforts. Recent demand offset i.e., an equivalent reduction in retail demand is estimated at 1.9 mgd.

With the adoption of the Bay-Delta Plan in 2018, the AWS team is proceeding with the assumption that it would be implemented. Although the flow volume may change with the Voluntary Agreement negotiations, the current water supply need to meet obligations is estimated to be 122 mgd. Under the same flow scenario, the water supply needed to meet projected demands is estimated to be 94 mgd.

With the central objective of meeting water supply needs, the planning approach for the AWS Program allows for a process that understands the range of estimated needs and supply availability in the context of uncertainties. It thus informs the different decisions from identifying and conceptualizing projects, planning them, to implementing or advancing them forward.

3.4 Making San Jose and Santa Clara Permanent Customers (UPDATED)

Currently, the Cities of San Jose and Santa Clara are interruptible customers of the SFPUC. While the SFPUC has never interrupted water supply to San Jose and Santa Clara, the 2009 Water Supply Agreement with the Wholesale Customers allows the SFPUC to issue a conditional notice of termination of supply if sufficient long-term water supplies from the RWS are not available. As customer demands increase and uncertainties loom regarding future water supply availability, San Jose and Santa Clara have requested to become permanent customers of the SFPUC. Permanent status would give San Jose and Santa Clara the ability to guarantee water supply availability to support planned growth in the northern portion of each of these cities.
For San Jose and Santa Clara to become permanent customers of the SFPUC, an additional 9 mgd of new, year-round supplies would be needed to meet historic demand levels and up to 15.5 mgd would be needed to meet planned demand through 2045. The 2045 water supply needs for the AWS Program account for the 9-mgd deliveries to San Jose and Santa Clara as part of anticipated wholesale customer obligations.

<table>
<thead>
<tr>
<th>Customer</th>
<th>Historic Demand</th>
<th>Projected Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Jose</td>
<td>4.5 mgd</td>
<td>9 mgd</td>
</tr>
<tr>
<td>Santa Clara</td>
<td>4.5 mgd</td>
<td>6.5 mgd</td>
</tr>
</tbody>
</table>

Under the 2009 Water Supply Agreement, as amended in 2018, the SFPUC is committed to making a decision about whether to make San Jose and Santa Clara permanent customers by December 31, 2028. In order to give San Jose and Santa Clara permanent status, the SFPUC would have to identify specific water supplies based on which to provide individual supply guarantees at the combined historic level of 9 mgd. Environmental review for the identified project(s) should be complete for the SFPUC to be able to select water supply alternatives to implement.

Through the evaluation of alternative water supplies, the SFPUC intends to identify supplies that can meet anticipated dry-year needs and help the SFPUC Commission make a policy decision regarding permanent status for San Jose and Santa Clara by 2028. The SFPUC is pursuing a purified water opportunity in the South Bay (Section 1.1) with San Jose and Santa Clara, which is described now as the South Bay Purified Water Project in Section 2.1.

3.5 New Alternative Water Supplies

While the RWS will remain the backbone of the SFPUC’s wholesale and retail supply into the future, stresses on that system and new water supply needs require that alternative water supplies are considered along with creative and sustainable new solutions within the planning horizon to remain resilient and fully meet our needs. In addition to the opportunities identified, SFPUC staff are also continuing to seek more options. The supply categories that are being used for the AWS planning effort are described in the paragraphs below.

Storage (volume dependent on supply availability and conveyance). Both surface water and groundwater storage provide opportunities to hold water when it can be conserved so that it can be available when it is needed the most (dry years). The amount of water storage that can be used is dependent on the amount of additional supplies that could be secured as well as the capacity of the conveyance facilities that connect storage to the RWS. The Calaveras Reservoir Expansion Project and the LVE Project would provide new storage opportunities. The Daly City Recycled Water Expansion Project would offset groundwater pumping in Colma, leaving more groundwater in the South Westside Basin, supporting the reliability of the ongoing Groundwater Storage and Recovery Project during dry years. In addition, the SFPUC is exploring...
opportunities for inter-basin collaborations and regional groundwater banking in the Tuolumne River watershed. Expanding the capacity of Hetch Hetchy Reservoir was considered but is not being pursued in the planning horizon at this time.

Dry Year Transfers (~2 mgd). A transfer of water from another agency utilizing existing facilities during dry years would be an ideal way to efficiently utilize existing water supplies. However, during droughts is when there is a significant shortage in water supply, so securing dry-year transfers has proven difficult in the past due to institutional complexities. SFPUC staff are continuing to pursue all feasible opportunities.

Purified Water (Potable Reuse) (~10-25 mgd). Potable reuse is a process by which treated effluent from a wastewater treatment plant undergoes advanced treatment, including filtration, reverse osmosis, disinfection, and advanced oxidation, to produce purified water (the product) that is comparable to drinking water standards. Depending on the nature of the project, this purified water can be used to augment surface water supplies, recharge a groundwater basin, or be blended in a drinking water reservoir for direct distribution. The latter form of potable reuse (also termed as treated water augmentation) is not yet regulated, but expected to be in 2023. Several utilities in California are considering purified water projects.

Unlike dry-year transfers or storage projects that can enhance drought period reliability, potable reuse projects are generally designed to be operated in all years, including wet/normal years when use and storage capacity for that water may be limited or unavailable. In addition to pursuing these projects, SFPUC staff continue to look for design and technology solutions for intermittent or scalable use.

Desalination (~5-15 mgd). The Brackish Water Desalination Project could provide 5-15 mgd of new supply for the SFPUC. The proposed project would be located in East Contra Costa County with partners including CCWD, Zone 7 Water Agency and Valley Water. EBMUD and ACWD may play an active role in the project in the future. Similar to potable reuse projects, a regional desalination project would likely need to be operated year-round to maintain the integrity of the treatment systems unless scalable design or technology solutions are identified. However, developed in conjunction with the LVE Project, this project could be used to provide greater dry-year supply reliability.

3.5.1 Water Supply Programs not included in the AWS Program (UPDATED)

In 2008, the SFPUC Commission adopted the Phased Water Supply Improvement Program, a variant of the proposed program that included 10 mgd of conservation, recycled water and groundwater in San Francisco, and 10 mgd of conservation, recycled water and groundwater in the wholesale service area.

San Francisco is implementing its 10 mgd increment of local supply through the Local Water Supply Program. The program includes the San Francisco Groundwater Supply Project to augment San Francisco’s retail water supply with local groundwater, and several recycled water
projects, including the Westside Enhanced Water Recycling Project, to provide non-potable water for irrigation.

Individual wholesale customers have implemented active conservation programs in their service areas to maintain low per capita use and are similarly investing in groundwater and water recycling programs to offset potable demands. The SFPUC does not track non-RWS supplies in the wholesale service area; however, staff shares best practices and coordinates on planning and messaging through BAWSCA and common planning efforts.

It’s important to note that the projects identified to meet the 10 mgd local water supply commitments under Phased Water Supply Improvement Program were being planned well before the new water supply needs of 94 mgd to 122 mgd were identified; therefore, they are not counted toward meeting the current water supply needs that are the focus of the AWS Program.

3.6 Planning for Implementation

If all the projects identified through the SFPUC’s current AWS planning process to date could be implemented, there would still be a supply shortfall to meet dry-year demands with San Jose and Santa Clara all-year water supply needs included. Furthermore, each of the supply options being considered has its own inherent challenges and uncertainties that may affect our ability to implement it.

Given the limited availability of water supply alternatives - unless the supply risks are significantly reduced or the water supply needs change significantly - the SFPUC will continue to plan, develop and implement all project, partnership and policy opportunities that can help bridge the anticipated water supply gaps. In 2019 a survey was completed among water and wastewater agencies within the SFPUC service area to try to identify additional opportunities for purified water. Such opportunities remain limited, but staff continue to pursue all possibilities, and water supply options identified here may be augmented over time.

3.7 Trends and Risks

Of the regional water supply options being considered, there is only one (Calaveras Reservoir Expansion) that does not involve multi-party partnerships with institutional complexities. In all other cases, the SFPUC relies on our partner water and wastewater utilities to move forward due to jurisdictions over water sources or infrastructure. Therefore, other agencies’ priorities, decision-making processes, funding, and other constraints are also factors in the feasibility, cost, and schedule of these regional projects (Figure 6).
Another risk facing some of the projects is regulatory uncertainty. While the State Board has adopted regulations for some forms of potable reuse, including groundwater injection and surface water augmentation, it has yet to pass regulations concerning direct potable reuse. Without clear regulatory guidance, projects with direct potable reuse components are at risk due to uncertainties concerning water quality criteria, treatment technologies, and overall feasibility.

3.8 Timeframe

Planning is progressing for the proposed AWS projects. Given the level of complexity and uncertainty, project implementation is expected to take between 10 and 30 years. As planning continues, the timing of water supply needs will be taken into account such as implementation of Bay-Delta Plan requirements during the next drought or the decision by 2028 to make San Jose and Santa Clara permanent customers.

As with traditional infrastructure projects, there is a need to progress systematically from planning to environmental review, and then on to detailed design, permitting and construction of the AWS projects. Given the complexity and inherent challenges described in the previous sections, these projects will require a long lead time to develop and implement.

Typically, a minimum of 10% design is needed to obtain the level of project detail required to begin preparation of an environmental document. To achieve this, the SFPUC will need to work closely with its partners to complete the feasibility phase of the projects and make decisions about which projects to pursue no later than 2023. Environmental review for the Los Vaqueros Reservoir Expansion Project and the Daly City Recycled Water Expansion Project are complete. Other AWS projects described in this report are moving toward completing feasibility studies by or before 2023.
A high-level schedule overview of each AWS project is shown on the next page. The AWS Plan development is also in process and will be completed by July 2023. As shown in the schedule, the AWS Plan will be developed concurrently with ongoing project-level analyses.
Completion of Alternative Water Supply Plan

Decision for 1) dry-year supplies for existing customers and 2) San Jose and Santa Clara permanent status

Regional Projects
- Daly City Recycled Water Expansion
- Los Vaqueros Conveyance Alternatives
- Brackish Water Desalination (Los Vaqueros Water Supply)
- ACWD-USD Purified Water
- Crystal Springs Purified Water (PREP)
- Los Vaqueros Reservoir Expansion
- Calaveras Reservoir Expansion

Local Projects
- Innovations Program
- San Francisco Purified Water

Up Country Projects
- Groundwater Banking
- Inter-Basin Collaboration
- Dry-Year Transfers

Ongoing Outreach and Education

Planning
Env. Review
Design
Construction
3.9 Staffing

In order to advance the planning for several of the AWS projects expeditiously, the SFPUC established a new group within the Water Resources Division in 2020. The group has four project managers: two focused on detailed project-specific efforts; one focused on local and regional projects and coordination with other resource areas; and one dedicated to long-term planning including the development of the AWS Plan by 2023. The group is led by planning manager who focuses on program management and implementation including cross-project planning.

3.10 Water Supply Task Force

Success in planning water supply projects will ultimately depend on the ability to operate and integrate the new supplies into the existing water supply network. This goal is even more challenging when the new water supplies are from very different sources from the existing surface water and groundwater supplies.

To advance the AWS projects in a thoughtful way, the SFPUC has a Water Supply Task Force that brings together a cross-functional group including planning, policy, environmental management, operations, water quality, finance, legal, and communications resources. Through early and frequent communications on all of the proposed projects, this group helps in anticipating long-term risks and challenges and addressing them early in the planning process. The Water Supply Task Force convenes every two weeks and has continued to do so remotely since March 2020.

3.11 Regional Project Funding

As of February 2022, the SFPUC’s 10-year CIP budget includes $404 million for the planning and implementation of regional AWS projects. This includes full implementation anticipated for the Daly City Recycled Water Expansion Project and the LVE Project. Of this budget, $48 million has been appropriated for planning and design activities.

3.12 Professional Services Contracts

The Water Resources Division is managing two as-needed joint venture contracts with a capacity of $4 million each with 1) Carollo Engineers and Water Resources Engineering (WRE) and 2) Woodard and Curran and SRT Consultants. Some of the capacity in these contracts will be used for planning studies associated with the AWS Program, as needed to meet planning objectives. These contracts enable the SFPUC to move quickly to evaluate specific planning needs. If necessary, other as-needed contracting capacity through the Water Enterprise may also be available. It is anticipated that additional professional services support will be utilized to advance planning efforts.
3.13 Adapting to an Uncertain Future

The AWS Program is intended to identify, screen and plan for new alternative water opportunities that can help meet the SFPUC’s foreseeable water supply needs over the planning horizon. Recognizing that these projects would introduce new sources of supply and require new partnerships, this program necessarily requires an integrated and holistic planning approach, both within the SFPUC and with external partners. Given the uncertain nature of planning needs, it also requires some built-in adaptability and flexibility. As this section described, the AWS Program has the infrastructure and resources needed to continue to plan in a changing environment.